GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression.
ABO Blood-Group System
/ genetics
Antigens, Neoplasm
/ genetics
CDX2 Transcription Factor
/ genetics
Depression
Duodenal Ulcer
Female
Fucosyltransferases
/ genetics
GPI-Linked Proteins
Galactosyltransferases
Gastroesophageal Reflux
Gastrointestinal Diseases
/ genetics
Genetic Predisposition to Disease
/ genetics
Genome-Wide Association Study
/ methods
Helicobacter Infections
/ complications
Helicobacter pylori
/ genetics
Humans
Inflammatory Bowel Diseases
Male
Mucin-1
/ genetics
Mucin-6
/ genetics
Neoplasm Proteins
Peptic Ulcer
/ complications
Galactoside 2-alpha-L-fucosyltransferase
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 02 2021
19 02 2021
Historique:
received:
15
06
2020
accepted:
06
01
2021
entrez:
20
2
2021
pubmed:
21
2
2021
medline:
12
3
2021
Statut:
epublish
Résumé
Genetic factors are recognized to contribute to peptic ulcer disease (PUD) and other gastrointestinal diseases, such as gastro-oesophageal reflux disease (GORD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Here, genome-wide association study (GWAS) analyses based on 456,327 UK Biobank (UKB) individuals identify 8 independent and significant loci for PUD at, or near, genes MUC1, MUC6, FUT2, PSCA, ABO, CDX2, GAST and CCKBR. There are previously established roles in susceptibility to Helicobacter pylori infection, response to counteract infection-related damage, gastric acid secretion or gastrointestinal motility for these genes. Only two associations have been previously reported for duodenal ulcer, here replicated trans-ancestrally. The results highlight the role of host genetic susceptibility to infection. Post-GWAS analyses for PUD, GORD, IBS and IBD add insights into relationships between these gastrointestinal diseases and their relationships with depression, a commonly comorbid disorder.
Identifiants
pubmed: 33608531
doi: 10.1038/s41467-021-21280-7
pii: 10.1038/s41467-021-21280-7
pmc: PMC7895976
doi:
Substances chimiques
ABO Blood-Group System
0
Antigens, Neoplasm
0
CDX2 Transcription Factor
0
CDX2 protein, human
0
GPI-Linked Proteins
0
MUC1 protein, human
0
MUC6 protein, human
0
Mucin-1
0
Mucin-6
0
Neoplasm Proteins
0
PSCA protein, human
0
ABO protein, human
EC 2.4.1.-
Fucosyltransferases
EC 2.4.1.-
Galactosyltransferases
EC 2.4.1.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1146Subventions
Organisme : NIA NIH HHS
ID : RC2 AG036607
Pays : United States
Références
Peery, A. F. et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology 156, 254–272 (2019).
pubmed: 30315778
doi: 10.1053/j.gastro.2018.08.063
Williams, J. G. et al. Gastroenterology services in the UK. The burden of disease, and the organisation and delivery of services for gastrointestinal and liver disorders: a review of the evidence. Gut 56, 1 (2007).
pubmed: 17303614
doi: 10.1136/gut.2006.117598
Whitehead, W. E., Palsson, O. & Jones, K. R. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: What are the causes and implications? Gastroenterology 122, 1140–1156 (2002).
pubmed: 11910364
doi: 10.1053/gast.2002.32392
Vakil, N., van Zanten, S. V., Kahrilas, P., Dent, J. & Jones, R. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am. J. Gastroenterol. 101, 1900–1920 (2006). quiz 1943.
pubmed: 16928254
doi: 10.1111/j.1572-0241.2006.00630.x
Lanas, A. & Chan, F. K. L. Peptic ulcer disease. Lancet 390, 613–624 (2017).
pubmed: 28242110
doi: 10.1016/S0140-6736(16)32404-7
Charpignon, C. et al. Peptic ulcer disease: one in five is related to neither Helicobacter pylori nor aspirin/NSAID intake. Aliment Pharm. Ther. 38, 946–954 (2013).
doi: 10.1111/apt.12465
Böhmer, A. C. & Schumacher, J. Insights into the genetics of gastroesophageal reflux disease (GERD) and GERD-related disorders. Neurogastroenterol. Motil. 29, e13017 (2017).
doi: 10.1111/nmo.13017
El-Serag, H. B., Sweet, S., Winchester, C. C. & Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 63, 871–880 (2014).
pubmed: 23853213
doi: 10.1136/gutjnl-2012-304269
Canavan, C., West, J. & Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 6, 71–80 (2014).
pubmed: 24523597
pmcid: 3921083
Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).
pubmed: 23094724
doi: 10.1056/NEJMra1207068
Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205 (2015).
pubmed: 25732745
doi: 10.1038/nrgastro.2015.34
Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).
pubmed: 29050646
doi: 10.1016/S0140-6736(17)32448-0
Malaty, H. M., Graham, D. Y., Isaksson, I., Engstrand, L. & Pedersen, N. L. Are genetic influences on peptic ulcer dependent or independent of genetic influences for helicobacter pylori infection? Arch. Intern. Med. 160, 105–109 (2000).
pubmed: 10632311
doi: 10.1001/archinte.160.1.105
Mohammed, I., Cherkas, L. F., Riley, S. A., Spector, T. D. & Trudgill, N. J. Genetic influences in gastro-oesophageal reflux disease: a twin study. Gut 52, 1085–1089 (2003).
pubmed: 12865263
pmcid: 1773757
doi: 10.1136/gut.52.8.1085
Saito, Y. A. The role of genetics in IBS. Gastroenterol. Clin. N. Am. 40, 45–67 (2011).
doi: 10.1016/j.gtc.2010.12.011
Chen, G.-B. et al. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum. Mol. Genet. 23, 4710–4720 (2014).
pubmed: 24728037
pmcid: 4119411
doi: 10.1093/hmg/ddu174
Verstockt, B., Smith, K. G. C. & Lee, J. C. Genome-wide association studies in Crohn’s disease: past, present and future. Clin. Transl. Immunol. 7, e1001 (2018).
doi: 10.1002/cti2.1001
Tanikawa, C. et al. A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat. Genet. 44, 430 (2012).
pubmed: 22387998
doi: 10.1038/ng.1109
Bonfiglio, F. et al. A meta-analysis of reflux genome-wide association studies in 6750 Northern Europeans from the general population. Neurogastroenterol. Motil. 29, e12923 (2017).
An, J. et al. Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases. Nat. Commun. 10, 4219 (2019).
pubmed: 31527586
pmcid: 6746768
doi: 10.1038/s41467-019-11968-2
Ek, W. E. et al. Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts. Gut 64, 1774–1782 (2015).
pubmed: 25248455
doi: 10.1136/gutjnl-2014-307997
Holliday, E. G. et al. Genome-wide association study identifies two novel genomic regions in irritable bowel syndrome. Am. J. Gastroenterol. 109, 770–772 (2014).
pubmed: 24797007
doi: 10.1038/ajg.2014.56
Bonfiglio, F. et al. Female-specific association between variants on chromosome 9 and self-reported diagnosis of irritable bowel syndrome. Gastroenterology 155, 168–179 (2018).
pubmed: 29626450
doi: 10.1053/j.gastro.2018.03.064
Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).
pubmed: 30567928
doi: 10.1126/scitranslmed.aap8914
Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12, 453 (2011).
pubmed: 21750565
doi: 10.1038/nrn3071
Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9, 44 (2018).
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286 (2012).
pubmed: 22392290
doi: 10.1038/nrgastro.2012.32
Mayer, E. A. The neurobiology of stress and gastrointestinal disease. Gut 47, 861–869 (2000).
pubmed: 11076888
pmcid: 1728136
doi: 10.1136/gut.47.6.861
Hsu, C. C. et al. Depression and the risk of peptic ulcer disease: a Nationwide Population-based study. Medicine 94, e2333 (2015).
pubmed: 26705225
pmcid: 4697991
doi: 10.1097/MD.0000000000002333
Yang, X.-J., Jiang, H.-M., Hou, X.-H. & Song, J. Anxiety and depression in patients with gastroesophageal reflux disease and their effect on quality of life. World J. Gastroenterol. 21, 4302–4309 (2015).
pubmed: 25892882
pmcid: 4394093
doi: 10.3748/wjg.v21.i14.4302
Fond, G. et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 264, 651–660 (2014).
pubmed: 24705634
doi: 10.1007/s00406-014-0502-z
Frolkis, A. D. et al. Depression increases the risk of inflammatory bowel disease, which may be mitigated by the use of antidepressants in the treatment of depression. Gut https://doi.org/10.1136/gutjnl-2018-317182 (2018).
Richter, J. E. Effect of Helicobacter pylori eradication on the treatment of gastro-oesophageal reflux disease. Gut 53, 310–311 (2004).
pubmed: 14724170
pmcid: 1774927
doi: 10.1136/gut.2003.019844
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310
pmcid: 3593158
doi: 10.1038/ng.2213
Banda, Y. et al. Characterizing race/ethnicity and genetic Ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics 200, 1285–1295 (2015).
pubmed: 26092716
pmcid: 4574246
doi: 10.1534/genetics.115.178616
Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).
pubmed: 29335400
pmcid: 5768719
doi: 10.1038/s41467-017-02317-2
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).
pubmed: 27899670
doi: 10.1093/nar/gkw1133
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).
doi: 10.1093/bioinformatics/btw613
pubmed: 27663502
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444
doi: 10.1038/s41588-018-0269-7
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
pubmed: 29483656
pmcid: 5918692
doi: 10.1038/s41588-018-0059-2
Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391 (2016).
pubmed: 26754954
pmcid: 4940340
doi: 10.1038/mp.2015.197
Duncan, L. E. et al. Largest GWAS of PTSD (N = 20,070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666 (2017).
pubmed: 28439101
pmcid: 5696105
doi: 10.1038/mp.2017.77
Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).
pubmed: 31043756
pmcid: 6956732
doi: 10.1038/s41588-019-0397-8
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558
pmcid: 6454898
doi: 10.1038/s41588-019-0344-8
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
pubmed: 29700475
pmcid: 5934326
doi: 10.1038/s41588-018-0090-3
Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018).
pubmed: 29777097
pmcid: 5959890
doi: 10.1038/s41398-018-0150-6
Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).
pubmed: 31701892
doi: 10.1016/S1474-4422(19)30320-5
pmcid: 8422160
Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).
pubmed: 27089181
pmcid: 4884152
doi: 10.1038/ng.3552
Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017).
pubmed: 28604731
pmcid: 5600256
doi: 10.1038/ng.3888
Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).
pubmed: 27992416
doi: 10.1038/ng.3749
Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).
pubmed: 25673413
pmcid: 4382211
doi: 10.1038/nature14177
Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).
pubmed: 25673412
pmcid: 4338562
doi: 10.1038/nature14132
Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
pubmed: 26343387
pmcid: 4589895
doi: 10.1038/ng.3396
Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).
pubmed: 22885922
pmcid: 3442244
doi: 10.1038/ng.2383
Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).
pubmed: 27225129
pmcid: 4883595
doi: 10.1038/nature17671
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380
pmcid: 5896795
doi: 10.1038/s41588-018-0081-4
GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
pmcid: 4547484
doi: 10.1126/science.1262110
Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).
pubmed: 25581432
doi: 10.1038/ng.3173
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396
pmcid: 6393768
doi: 10.1038/s41588-018-0147-3
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).
pubmed: 30643251
pmcid: 6358542
doi: 10.1038/s41588-018-0307-5
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).
pubmed: 27019110
doi: 10.1038/ng.3538
McRae, A. F. et al. Identification of 55,000 replicated DNA methylation QTL. Sci. Rep. 8, 17605 (2018).
pubmed: 30514905
pmcid: 6279736
doi: 10.1038/s41598-018-35871-w
Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317 (2015).
doi: 10.1038/nature14248
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLOS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710
pmcid: 4401657
doi: 10.1371/journal.pcbi.1004219
Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 52, 437–447 (2020).
pubmed: 32231276
doi: 10.1038/s41588-020-0594-5
pmcid: 7906795
O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).
pubmed: 30374074
pmcid: 6684375
doi: 10.1038/s41588-018-0255-0
Toyoshima, O. et al. Decrease in PSCA expression caused by Helicobacter pylori infection may promote progression to severe gastritis. Oncotarget 9, 3936–3945 (2017).
pubmed: 29423095
pmcid: 5790512
doi: 10.18632/oncotarget.23278
Edgren, G. et al. Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am. J. Epidemiol. 172, 1280–1285 (2010).
pubmed: 20937632
doi: 10.1093/aje/kwq299
Melzer, D. et al. A Genome-Wide Association Study Identifies protein quantitative trait loci (pQTLs). PLOS Genet. 4, e1000072 (2008).
pubmed: 18464913
pmcid: 2362067
doi: 10.1371/journal.pgen.1000072
Ikehara, Y. et al. Polymorphisms of two fucosyltransferase genes (Lewis and Secretor genes) involving type I Lewis antigens are associated with the presence of anti-Helicobacter pylori IgG antibody. Cancer Epidemiol. Biomark. Prev. 10, 971–977 (2001).
Magalhães, A. et al. Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding. Sci. Rep. 6, 25575 (2016).
pubmed: 27161092
pmcid: 4861914
doi: 10.1038/srep25575
Azad, M. B., Wade, K. H. & Timpson, N. J. FUT2 secretor genotype and susceptibility to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Res. 3, 65 (2018).
pubmed: 30345375
pmcid: 6171556
doi: 10.12688/wellcomeopenres.14636.2
McGuckin, M. A. et al. Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology 133, 1210–1218 (2007).
pubmed: 17919495
doi: 10.1053/j.gastro.2007.07.003
Niv, Y. Helicobacter pylori and gastric mucin expression: a systematic review and meta-analysis. World J. Gastroenterol. 21, 9430–9436 (2015).
pubmed: 26309370
pmcid: 4541396
doi: 10.3748/wjg.v21.i31.9430
Boltin, D. & Niv, Y. Mucins in gastric cancer—an update. J. Gastrointest. Dig. Syst. 3, 15519 (2013).
pubmed: 24077811
pmcid: 3784667
doi: 10.4172/2161-069X.1000123
Asano, N. et al. Cdx2 expression and intestinal metaplasia induced by H. pylori infection of gastric cells is regulated by NOD1-mediated innate immune responses. Cancer Res. 76, 1135 LP–1131145 (2016).
doi: 10.1158/0008-5472.CAN-15-2272
Lenka, A., Arumugham, S. S., Christopher, R. & Pal, P. K. Genetic substrates of psychosis in patients with Parkinson’s disease: a critical review. J. Neurol. Sci. 364, 33–41 (2016).
pubmed: 27084212
doi: 10.1016/j.jns.2016.03.005
Murrough, J. W., Yaqubi, S., Sayed, S. & Charney, D. S. Emerging drugs for the treatment of anxiety. Expert Opin. Emerg. Drugs 20, 393–406 (2015).
pubmed: 26012843
pmcid: 4869976
doi: 10.1517/14728214.2015.1049996
Levine, D. M. et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat. Genet. 45, 1487 (2013).
pubmed: 24121790
pmcid: 3840115
doi: 10.1038/ng.2796
Fröhlich, H. et al. Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/− mice. Proc. Natl Acad. Sci. 116, 22237 LP–22222245 (2019).
doi: 10.1073/pnas.1911429116
Avetisyan, M., Schill, E. M. & Heuckeroth, R. O. Building a second brain in the bowel. J. Clin. Invest. 125, 899–907 (2015).
pubmed: 25664848
pmcid: 4362233
doi: 10.1172/JCI76307
Fass, R. & Tougas, G. Functional heartburn: the stimulus, the pain, and the brain. Gut 51, 885 (2002).
pubmed: 12427796
pmcid: 1773475
doi: 10.1136/gut.51.6.885
Lagoo, J., Pappas, T. N. & Perez, A. A relic or still relevant: the narrowing role for vagotomy in the treatment of peptic ulcer disease. Am. J. Surg. 207, 120–126 (2014).
pubmed: 24139666
doi: 10.1016/j.amjsurg.2013.02.012
Kim, S. Y. et al. Bidirectional association between gastroesophageal reflux disease and depression: two different nested case-control studies using a national sample cohort. Sci. Rep. 8, 11748 (2018).
pubmed: 30082758
pmcid: 6078941
doi: 10.1038/s41598-018-29629-7
Wu, Y. et al. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat. Commun. 10, 1891 (2019).
pubmed: 31015401
pmcid: 6478889
doi: 10.1038/s41467-019-09572-5
van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0137-z (2019).
Kamolz, T. & Velanovich, V. Psychological and emotional aspects of gastroesophageal reflux disease. Dis. Esophagus 15, 199–203 (2002).
pubmed: 12444990
doi: 10.1046/j.1442-2050.2002.00261.x
MartÍN-Merino, E., RuigÓMez, A., GarcÍA RodrÍGuez, L. A., Wallander, M. A. & Johansson, S. Depression and treatment with antidepressants are associated with the development of gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 31, 1132–1140 (2010).
pubmed: 20199498
Huang, W. S. et al. Use of proton pump inhibitors and risk of major depressive disorder: a nationwide population-based study. Psychother. Psychosom. 87, 62–64 (2018).
pubmed: 29306949
doi: 10.1159/000485190
Momen, N. C. et al. Association between mental disorders and subsequent medical conditions. N. Engl. J. Med. 382, 1721–1731 (2020).
pubmed: 32348643
pmcid: 7261506
doi: 10.1056/NEJMoa1915784
Nojkov, B. et al. The influence of co-morbid IBS and psychological distress on outcomes and quality of life following PPI therapy in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 27, 473–482 (2008).
pubmed: 18194508
doi: 10.1111/j.1365-2036.2008.03596.x
Khandaker, G. M., Dantzer, R. & Jones, P. B. Immunopsychiatry: important facts. Psychol. Med. 47, 2229–2237 (2017).
pubmed: 28418288
pmcid: 5817424
doi: 10.1017/S0033291717000745
Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider scope: when selection bias can substantially influence observed associations. Int. J. Epidemiol. 47, 226–235 (2017).
pmcid: 5837306
doi: 10.1093/ije/dyx206
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
pubmed: 30124842
pmcid: 6488973
doi: 10.1093/hmg/ddy271
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Mowat, C. et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 60, 571–607 (2011).
pubmed: 21464096
doi: 10.1136/gut.2010.224154
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
pubmed: 27910877
doi: 10.1038/nrd.2016.230
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Wray, N. R. & Gottesman, I. I. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 3, 118 (2012).
pubmed: 22783273
pmcid: 3387670
doi: 10.3389/fgene.2012.00118
Falconer, D. S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet. 29, 51–76 (1965).
doi: 10.1111/j.1469-1809.1965.tb00500.x
Reich, T., James, J. W. & Morris, C. A. The use of multiple thresholds in determining the mode of transmission of semi-continuous traits*. Ann. Hum. Genet. 36, 163–184 (1972).
pubmed: 4676360
doi: 10.1111/j.1469-1809.1972.tb00767.x
Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018).
pubmed: 29892013
pmcid: 6309610
doi: 10.1038/s41588-018-0144-6
Lloyd-Jones, L. R., Robinson, M. R., Yang, J. & Visscher, P. M. Transformation of summary statistics from linear mixed model association on all-or-none traits to odds ratio. Genetics 208, 1397–1408 (2018).
pubmed: 29429966
pmcid: 5887138
doi: 10.1534/genetics.117.300360
Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
pubmed: 20634204
pmcid: 2935401
doi: 10.1093/bioinformatics/btq419
Jiang, W. & Yu, W. Power estimation and sample size determination for replication studies of genome-wide association studies. BMC Genomics 17, 19–32 (2016).
doi: 10.1186/s12864-015-2296-4
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676
pmcid: 4797329
doi: 10.1038/ng.3406
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228 (2015).
pubmed: 26414678
pmcid: 4626285
doi: 10.1038/ng.3404
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
pubmed: 12045153
pmcid: 186604
doi: 10.1101/gr.229102
Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476 (2011).
pubmed: 21993624
pmcid: 3207357
doi: 10.1038/nature10530
The, E. P. C. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 (2012).
doi: 10.1038/nature11247
Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018).
Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).
pubmed: 29891976
pmcid: 5995828
doi: 10.1038/s41467-018-04558-1
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. 102, 15545–15550 (2005).
pubmed: 16199517
doi: 10.1073/pnas.0506580102
pmcid: 1239896
Liberzon, A. et al. The molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021
pmcid: 4707969
doi: 10.1016/j.cels.2015.12.004
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple test. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).
pubmed: 24114802
pmcid: 4377079
doi: 10.1002/gepi.21758
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
pubmed: 26050253
pmcid: 4469799
doi: 10.1093/ije/dyv080
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
pubmed: 27061298
pmcid: 4849733
doi: 10.1002/gepi.21965
Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).
pubmed: 29686387
pmcid: 6083837
doi: 10.1038/s41588-018-0099-7
Davey Smith, G. et al. STROBE-MR: Guidelines for strengthening the reporting of Mendelian randomization studies. PeerJ Prepr. 7, e27857v1 (2019).
Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
doi: 10.1186/1471-2105-12-77