GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 02 2021
Historique:
received: 15 06 2020
accepted: 06 01 2021
entrez: 20 2 2021
pubmed: 21 2 2021
medline: 12 3 2021
Statut: epublish

Résumé

Genetic factors are recognized to contribute to peptic ulcer disease (PUD) and other gastrointestinal diseases, such as gastro-oesophageal reflux disease (GORD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Here, genome-wide association study (GWAS) analyses based on 456,327 UK Biobank (UKB) individuals identify 8 independent and significant loci for PUD at, or near, genes MUC1, MUC6, FUT2, PSCA, ABO, CDX2, GAST and CCKBR. There are previously established roles in susceptibility to Helicobacter pylori infection, response to counteract infection-related damage, gastric acid secretion or gastrointestinal motility for these genes. Only two associations have been previously reported for duodenal ulcer, here replicated trans-ancestrally. The results highlight the role of host genetic susceptibility to infection. Post-GWAS analyses for PUD, GORD, IBS and IBD add insights into relationships between these gastrointestinal diseases and their relationships with depression, a commonly comorbid disorder.

Identifiants

pubmed: 33608531
doi: 10.1038/s41467-021-21280-7
pii: 10.1038/s41467-021-21280-7
pmc: PMC7895976
doi:

Substances chimiques

ABO Blood-Group System 0
Antigens, Neoplasm 0
CDX2 Transcription Factor 0
CDX2 protein, human 0
GPI-Linked Proteins 0
MUC1 protein, human 0
MUC6 protein, human 0
Mucin-1 0
Mucin-6 0
Neoplasm Proteins 0
PSCA protein, human 0
ABO protein, human EC 2.4.1.-
Fucosyltransferases EC 2.4.1.-
Galactosyltransferases EC 2.4.1.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1146

Subventions

Organisme : NIA NIH HHS
ID : RC2 AG036607
Pays : United States

Références

Peery, A. F. et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology 156, 254–272 (2019).
pubmed: 30315778 doi: 10.1053/j.gastro.2018.08.063
Williams, J. G. et al. Gastroenterology services in the UK. The burden of disease, and the organisation and delivery of services for gastrointestinal and liver disorders: a review of the evidence. Gut 56, 1 (2007).
pubmed: 17303614 doi: 10.1136/gut.2006.117598
Whitehead, W. E., Palsson, O. & Jones, K. R. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: What are the causes and implications? Gastroenterology 122, 1140–1156 (2002).
pubmed: 11910364 doi: 10.1053/gast.2002.32392
Vakil, N., van Zanten, S. V., Kahrilas, P., Dent, J. & Jones, R. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am. J. Gastroenterol. 101, 1900–1920 (2006). quiz 1943.
pubmed: 16928254 doi: 10.1111/j.1572-0241.2006.00630.x
Lanas, A. & Chan, F. K. L. Peptic ulcer disease. Lancet 390, 613–624 (2017).
pubmed: 28242110 doi: 10.1016/S0140-6736(16)32404-7
Charpignon, C. et al. Peptic ulcer disease: one in five is related to neither Helicobacter pylori nor aspirin/NSAID intake. Aliment Pharm. Ther. 38, 946–954 (2013).
doi: 10.1111/apt.12465
Böhmer, A. C. & Schumacher, J. Insights into the genetics of gastroesophageal reflux disease (GERD) and GERD-related disorders. Neurogastroenterol. Motil. 29, e13017 (2017).
doi: 10.1111/nmo.13017
El-Serag, H. B., Sweet, S., Winchester, C. C. & Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 63, 871–880 (2014).
pubmed: 23853213 doi: 10.1136/gutjnl-2012-304269
Canavan, C., West, J. & Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 6, 71–80 (2014).
pubmed: 24523597 pmcid: 3921083
Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).
pubmed: 23094724 doi: 10.1056/NEJMra1207068
Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205 (2015).
pubmed: 25732745 doi: 10.1038/nrgastro.2015.34
Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).
pubmed: 29050646 doi: 10.1016/S0140-6736(17)32448-0
Malaty, H. M., Graham, D. Y., Isaksson, I., Engstrand, L. & Pedersen, N. L. Are genetic influences on peptic ulcer dependent or independent of genetic influences for helicobacter pylori infection? Arch. Intern. Med. 160, 105–109 (2000).
pubmed: 10632311 doi: 10.1001/archinte.160.1.105
Mohammed, I., Cherkas, L. F., Riley, S. A., Spector, T. D. & Trudgill, N. J. Genetic influences in gastro-oesophageal reflux disease: a twin study. Gut 52, 1085–1089 (2003).
pubmed: 12865263 pmcid: 1773757 doi: 10.1136/gut.52.8.1085
Saito, Y. A. The role of genetics in IBS. Gastroenterol. Clin. N. Am. 40, 45–67 (2011).
doi: 10.1016/j.gtc.2010.12.011
Chen, G.-B. et al. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum. Mol. Genet. 23, 4710–4720 (2014).
pubmed: 24728037 pmcid: 4119411 doi: 10.1093/hmg/ddu174
Verstockt, B., Smith, K. G. C. & Lee, J. C. Genome-wide association studies in Crohn’s disease: past, present and future. Clin. Transl. Immunol. 7, e1001 (2018).
doi: 10.1002/cti2.1001
Tanikawa, C. et al. A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat. Genet. 44, 430 (2012).
pubmed: 22387998 doi: 10.1038/ng.1109
Bonfiglio, F. et al. A meta-analysis of reflux genome-wide association studies in 6750 Northern Europeans from the general population. Neurogastroenterol. Motil. 29, e12923 (2017).
An, J. et al. Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases. Nat. Commun. 10, 4219 (2019).
pubmed: 31527586 pmcid: 6746768 doi: 10.1038/s41467-019-11968-2
Ek, W. E. et al. Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts. Gut 64, 1774–1782 (2015).
pubmed: 25248455 doi: 10.1136/gutjnl-2014-307997
Holliday, E. G. et al. Genome-wide association study identifies two novel genomic regions in irritable bowel syndrome. Am. J. Gastroenterol. 109, 770–772 (2014).
pubmed: 24797007 doi: 10.1038/ajg.2014.56
Bonfiglio, F. et al. Female-specific association between variants on chromosome 9 and self-reported diagnosis of irritable bowel syndrome. Gastroenterology 155, 168–179 (2018).
pubmed: 29626450 doi: 10.1053/j.gastro.2018.03.064
Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).
pubmed: 30567928 doi: 10.1126/scitranslmed.aap8914
Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12, 453 (2011).
pubmed: 21750565 doi: 10.1038/nrn3071
Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9, 44 (2018).
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286 (2012).
pubmed: 22392290 doi: 10.1038/nrgastro.2012.32
Mayer, E. A. The neurobiology of stress and gastrointestinal disease. Gut 47, 861–869 (2000).
pubmed: 11076888 pmcid: 1728136 doi: 10.1136/gut.47.6.861
Hsu, C. C. et al. Depression and the risk of peptic ulcer disease: a Nationwide Population-based study. Medicine 94, e2333 (2015).
pubmed: 26705225 pmcid: 4697991 doi: 10.1097/MD.0000000000002333
Yang, X.-J., Jiang, H.-M., Hou, X.-H. & Song, J. Anxiety and depression in patients with gastroesophageal reflux disease and their effect on quality of life. World J. Gastroenterol. 21, 4302–4309 (2015).
pubmed: 25892882 pmcid: 4394093 doi: 10.3748/wjg.v21.i14.4302
Fond, G. et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 264, 651–660 (2014).
pubmed: 24705634 doi: 10.1007/s00406-014-0502-z
Frolkis, A. D. et al. Depression increases the risk of inflammatory bowel disease, which may be mitigated by the use of antidepressants in the treatment of depression. Gut https://doi.org/10.1136/gutjnl-2018-317182 (2018).
Richter, J. E. Effect of Helicobacter pylori eradication on the treatment of gastro-oesophageal reflux disease. Gut 53, 310–311 (2004).
pubmed: 14724170 pmcid: 1774927 doi: 10.1136/gut.2003.019844
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310 pmcid: 3593158 doi: 10.1038/ng.2213
Banda, Y. et al. Characterizing race/ethnicity and genetic Ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics 200, 1285–1295 (2015).
pubmed: 26092716 pmcid: 4574246 doi: 10.1534/genetics.115.178616
Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).
pubmed: 29335400 pmcid: 5768719 doi: 10.1038/s41467-017-02317-2
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056 pmcid: 5705698 doi: 10.1038/s41467-017-01261-5
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).
pubmed: 27899670 doi: 10.1093/nar/gkw1133
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).
doi: 10.1093/bioinformatics/btw613 pubmed: 27663502
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444 doi: 10.1038/s41588-018-0269-7
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
pubmed: 29483656 pmcid: 5918692 doi: 10.1038/s41588-018-0059-2
Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391 (2016).
pubmed: 26754954 pmcid: 4940340 doi: 10.1038/mp.2015.197
Duncan, L. E. et al. Largest GWAS of PTSD (N = 20,070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666 (2017).
pubmed: 28439101 pmcid: 5696105 doi: 10.1038/mp.2017.77
Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).
pubmed: 31043756 pmcid: 6956732 doi: 10.1038/s41588-019-0397-8
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558 pmcid: 6454898 doi: 10.1038/s41588-019-0344-8
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
pubmed: 29700475 pmcid: 5934326 doi: 10.1038/s41588-018-0090-3
Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018).
pubmed: 29777097 pmcid: 5959890 doi: 10.1038/s41398-018-0150-6
Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).
pubmed: 31701892 doi: 10.1016/S1474-4422(19)30320-5 pmcid: 8422160
Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).
pubmed: 27089181 pmcid: 4884152 doi: 10.1038/ng.3552
Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017).
pubmed: 28604731 pmcid: 5600256 doi: 10.1038/ng.3888
Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).
pubmed: 27992416 doi: 10.1038/ng.3749
Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).
pubmed: 25673413 pmcid: 4382211 doi: 10.1038/nature14177
Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).
pubmed: 25673412 pmcid: 4338562 doi: 10.1038/nature14132
Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
pubmed: 26343387 pmcid: 4589895 doi: 10.1038/ng.3396
Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).
pubmed: 22885922 pmcid: 3442244 doi: 10.1038/ng.2383
Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).
pubmed: 27225129 pmcid: 4883595 doi: 10.1038/nature17671
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380 pmcid: 5896795 doi: 10.1038/s41588-018-0081-4
GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
pmcid: 4547484 doi: 10.1126/science.1262110
Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).
pubmed: 25581432 doi: 10.1038/ng.3173
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396 pmcid: 6393768 doi: 10.1038/s41588-018-0147-3
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).
pubmed: 30643251 pmcid: 6358542 doi: 10.1038/s41588-018-0307-5
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).
pubmed: 27019110 doi: 10.1038/ng.3538
McRae, A. F. et al. Identification of 55,000 replicated DNA methylation QTL. Sci. Rep. 8, 17605 (2018).
pubmed: 30514905 pmcid: 6279736 doi: 10.1038/s41598-018-35871-w
Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317 (2015).
doi: 10.1038/nature14248
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLOS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 52, 437–447 (2020).
pubmed: 32231276 doi: 10.1038/s41588-020-0594-5 pmcid: 7906795
O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).
pubmed: 30374074 pmcid: 6684375 doi: 10.1038/s41588-018-0255-0
Toyoshima, O. et al. Decrease in PSCA expression caused by Helicobacter pylori infection may promote progression to severe gastritis. Oncotarget 9, 3936–3945 (2017).
pubmed: 29423095 pmcid: 5790512 doi: 10.18632/oncotarget.23278
Edgren, G. et al. Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am. J. Epidemiol. 172, 1280–1285 (2010).
pubmed: 20937632 doi: 10.1093/aje/kwq299
Melzer, D. et al. A Genome-Wide Association Study Identifies protein quantitative trait loci (pQTLs). PLOS Genet. 4, e1000072 (2008).
pubmed: 18464913 pmcid: 2362067 doi: 10.1371/journal.pgen.1000072
Ikehara, Y. et al. Polymorphisms of two fucosyltransferase genes (Lewis and Secretor genes) involving type I Lewis antigens are associated with the presence of anti-Helicobacter pylori IgG antibody. Cancer Epidemiol. Biomark. Prev. 10, 971–977 (2001).
Magalhães, A. et al. Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding. Sci. Rep. 6, 25575 (2016).
pubmed: 27161092 pmcid: 4861914 doi: 10.1038/srep25575
Azad, M. B., Wade, K. H. & Timpson, N. J. FUT2 secretor genotype and susceptibility to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Res. 3, 65 (2018).
pubmed: 30345375 pmcid: 6171556 doi: 10.12688/wellcomeopenres.14636.2
McGuckin, M. A. et al. Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology 133, 1210–1218 (2007).
pubmed: 17919495 doi: 10.1053/j.gastro.2007.07.003
Niv, Y. Helicobacter pylori and gastric mucin expression: a systematic review and meta-analysis. World J. Gastroenterol. 21, 9430–9436 (2015).
pubmed: 26309370 pmcid: 4541396 doi: 10.3748/wjg.v21.i31.9430
Boltin, D. & Niv, Y. Mucins in gastric cancer—an update. J. Gastrointest. Dig. Syst. 3, 15519 (2013).
pubmed: 24077811 pmcid: 3784667 doi: 10.4172/2161-069X.1000123
Asano, N. et al. Cdx2 expression and intestinal metaplasia induced by H. pylori infection of gastric cells is regulated by NOD1-mediated innate immune responses. Cancer Res. 76, 1135 LP–1131145 (2016).
doi: 10.1158/0008-5472.CAN-15-2272
Lenka, A., Arumugham, S. S., Christopher, R. & Pal, P. K. Genetic substrates of psychosis in patients with Parkinson’s disease: a critical review. J. Neurol. Sci. 364, 33–41 (2016).
pubmed: 27084212 doi: 10.1016/j.jns.2016.03.005
Murrough, J. W., Yaqubi, S., Sayed, S. & Charney, D. S. Emerging drugs for the treatment of anxiety. Expert Opin. Emerg. Drugs 20, 393–406 (2015).
pubmed: 26012843 pmcid: 4869976 doi: 10.1517/14728214.2015.1049996
Levine, D. M. et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat. Genet. 45, 1487 (2013).
pubmed: 24121790 pmcid: 3840115 doi: 10.1038/ng.2796
Fröhlich, H. et al. Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/− mice. Proc. Natl Acad. Sci. 116, 22237 LP–22222245 (2019).
doi: 10.1073/pnas.1911429116
Avetisyan, M., Schill, E. M. & Heuckeroth, R. O. Building a second brain in the bowel. J. Clin. Invest. 125, 899–907 (2015).
pubmed: 25664848 pmcid: 4362233 doi: 10.1172/JCI76307
Fass, R. & Tougas, G. Functional heartburn: the stimulus, the pain, and the brain. Gut 51, 885 (2002).
pubmed: 12427796 pmcid: 1773475 doi: 10.1136/gut.51.6.885
Lagoo, J., Pappas, T. N. & Perez, A. A relic or still relevant: the narrowing role for vagotomy in the treatment of peptic ulcer disease. Am. J. Surg. 207, 120–126 (2014).
pubmed: 24139666 doi: 10.1016/j.amjsurg.2013.02.012
Kim, S. Y. et al. Bidirectional association between gastroesophageal reflux disease and depression: two different nested case-control studies using a national sample cohort. Sci. Rep. 8, 11748 (2018).
pubmed: 30082758 pmcid: 6078941 doi: 10.1038/s41598-018-29629-7
Wu, Y. et al. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat. Commun. 10, 1891 (2019).
pubmed: 31015401 pmcid: 6478889 doi: 10.1038/s41467-019-09572-5
van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0137-z (2019).
Kamolz, T. & Velanovich, V. Psychological and emotional aspects of gastroesophageal reflux disease. Dis. Esophagus 15, 199–203 (2002).
pubmed: 12444990 doi: 10.1046/j.1442-2050.2002.00261.x
MartÍN-Merino, E., RuigÓMez, A., GarcÍA RodrÍGuez, L. A., Wallander, M. A. & Johansson, S. Depression and treatment with antidepressants are associated with the development of gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 31, 1132–1140 (2010).
pubmed: 20199498
Huang, W. S. et al. Use of proton pump inhibitors and risk of major depressive disorder: a nationwide population-based study. Psychother. Psychosom. 87, 62–64 (2018).
pubmed: 29306949 doi: 10.1159/000485190
Momen, N. C. et al. Association between mental disorders and subsequent medical conditions. N. Engl. J. Med. 382, 1721–1731 (2020).
pubmed: 32348643 pmcid: 7261506 doi: 10.1056/NEJMoa1915784
Nojkov, B. et al. The influence of co-morbid IBS and psychological distress on outcomes and quality of life following PPI therapy in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 27, 473–482 (2008).
pubmed: 18194508 doi: 10.1111/j.1365-2036.2008.03596.x
Khandaker, G. M., Dantzer, R. & Jones, P. B. Immunopsychiatry: important facts. Psychol. Med. 47, 2229–2237 (2017).
pubmed: 28418288 pmcid: 5817424 doi: 10.1017/S0033291717000745
Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider scope: when selection bias can substantially influence observed associations. Int. J. Epidemiol. 47, 226–235 (2017).
pmcid: 5837306 doi: 10.1093/ije/dyx206
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
pubmed: 30124842 pmcid: 6488973 doi: 10.1093/hmg/ddy271
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Mowat, C. et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 60, 571–607 (2011).
pubmed: 21464096 doi: 10.1136/gut.2010.224154
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
pubmed: 27910877 doi: 10.1038/nrd.2016.230
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424 pmcid: 3025716 doi: 10.1093/bioinformatics/btq559
Wray, N. R. & Gottesman, I. I. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 3, 118 (2012).
pubmed: 22783273 pmcid: 3387670 doi: 10.3389/fgene.2012.00118
Falconer, D. S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet. 29, 51–76 (1965).
doi: 10.1111/j.1469-1809.1965.tb00500.x
Reich, T., James, J. W. & Morris, C. A. The use of multiple thresholds in determining the mode of transmission of semi-continuous traits*. Ann. Hum. Genet. 36, 163–184 (1972).
pubmed: 4676360 doi: 10.1111/j.1469-1809.1972.tb00767.x
Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018).
pubmed: 29892013 pmcid: 6309610 doi: 10.1038/s41588-018-0144-6
Lloyd-Jones, L. R., Robinson, M. R., Yang, J. & Visscher, P. M. Transformation of summary statistics from linear mixed model association on all-or-none traits to odds ratio. Genetics 208, 1397–1408 (2018).
pubmed: 29429966 pmcid: 5887138 doi: 10.1534/genetics.117.300360
Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
pubmed: 20634204 pmcid: 2935401 doi: 10.1093/bioinformatics/btq419
Jiang, W. & Yu, W. Power estimation and sample size determination for replication studies of genome-wide association studies. BMC Genomics 17, 19–32 (2016).
doi: 10.1186/s12864-015-2296-4
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228 (2015).
pubmed: 26414678 pmcid: 4626285 doi: 10.1038/ng.3404
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
pubmed: 12045153 pmcid: 186604 doi: 10.1101/gr.229102
Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476 (2011).
pubmed: 21993624 pmcid: 3207357 doi: 10.1038/nature10530
The, E. P. C. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 (2012).
doi: 10.1038/nature11247
Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018).
Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).
pubmed: 29891976 pmcid: 5995828 doi: 10.1038/s41467-018-04558-1
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. 102, 15545–15550 (2005).
pubmed: 16199517 doi: 10.1073/pnas.0506580102 pmcid: 1239896
Liberzon, A. et al. The molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021 pmcid: 4707969 doi: 10.1016/j.cels.2015.12.004
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple test. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).
pubmed: 24114802 pmcid: 4377079 doi: 10.1002/gepi.21758
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
pubmed: 26050253 pmcid: 4469799 doi: 10.1093/ije/dyv080
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).
pubmed: 27061298 pmcid: 4849733 doi: 10.1002/gepi.21965
Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).
pubmed: 29686387 pmcid: 6083837 doi: 10.1038/s41588-018-0099-7
Davey Smith, G. et al. STROBE-MR: Guidelines for strengthening the reporting of Mendelian randomization studies. PeerJ Prepr. 7, e27857v1 (2019).
Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
doi: 10.1186/1471-2105-12-77

Auteurs

Yeda Wu (Y)

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia. yeda.wu@uq.edu.au.

Graham K Murray (GK)

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
Department of Psychiatry, University of Cambridge, Cambridge, UK.
Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.

Enda M Byrne (EM)

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.

Julia Sidorenko (J)

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.

Peter M Visscher (PM)

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.

Naomi R Wray (NR)

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia. naomi.wray@uq.edu.au.
Queensland Brain Institute, The University of Queensland, Brisbane, Australia. naomi.wray@uq.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH