Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy.


Journal

Heredity
ISSN: 1365-2540
Titre abrégé: Heredity (Edinb)
Pays: England
ID NLM: 0373007

Informations de publication

Date de publication:
05 2021
Historique:
received: 29 05 2020
accepted: 25 01 2021
revised: 24 01 2021
pubmed: 21 2 2021
medline: 26 10 2021
entrez: 20 2 2021
Statut: ppublish

Résumé

Conservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.

Identifiants

pubmed: 33608651
doi: 10.1038/s41437-021-00413-0
pii: 10.1038/s41437-021-00413-0
pmc: PMC8102499
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

846-858

Références

Aægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322
doi: 10.1093/aob/mcp242
Ahrens CW, James EA, Botanic R, Melbourne G, Ave B, Yarra S (2015) Range-wide genetic analysis reveals limited structure and suggests asexual patterns in the rare forb Senecio macrocarpus. Biol J Linn Soc 115:256–269
doi: 10.1111/bij.12512
Bouckaert R (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–137
pubmed: 20228129 doi: 10.1093/bioinformatics/btq110
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourmet M, Gavryushkina A et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:1–28
doi: 10.1371/journal.pcbi.1006650
Bowler J (1982) Aridity in the late tertiary and quaternary of Australia. In: Barker W, Greenslade P (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, p 35–45
Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC et al. (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615–628
pubmed: 31300751 doi: 10.1038/s41576-019-0152-0
Brown AHD, Young AG (2000) Genetic diversity in tetraploid populations of the endangered daisy Rutidosis leptorrhynchoides and implications for its conservation. Heredity (Edinb) 85:122–129
doi: 10.1046/j.1365-2540.2000.00742.x
Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, Roychoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932
pubmed: 22422763 pmcid: 3408069 doi: 10.1093/molbev/mss086
Bull M, Stolfo G (2014) Flora of Melbourne. A guide to the indigenous plants of the greater Melbourne area, 4th edn. Hyland House, Melbourne
Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol Conserv 93:177–186
doi: 10.1016/S0006-3207(99)00150-0
Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:379–384
doi: 10.1371/journal.pgen.0020064
Chen C, Lu RS, Zhu SS, Tamaki I, Qiu YX (2017) Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity (Edinb) 119:95–106
doi: 10.1038/hdy.2017.19
Clarke GM, O’Dwyer C (2000) Genetic variability and population structure of the endangered golden sun moth, Synemon plana. Biol Conserv 92:371–381
doi: 10.1016/S0006-3207(99)00110-X
Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237
doi: 10.1146/annurev.ecolsys.34.030102.151717
Coleman RA, Weeks AR, Hoffmann AA (2013) Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Mol Ecol 22:1820–1835
pubmed: 23432132 doi: 10.1111/mec.12227
Courtice B, Hoebee SE, Sinclair S, Morgan JW (2020) Local population density affects pollinator visitation in the endangered grassland daisy Rutidosis leptorhynchoides (Asteraceae). Aust J Bot 67:638–648
doi: 10.1071/BT18243
Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. TREE 15:290–295
pubmed: 10856956
Delph LF, Kelly JK (2014) On the importance of balancing selection in plants. N Phytol 201:45–56
doi: 10.1111/nph.12441
DeMauro MM (1993) Relationship of breeding system to rarity in the Lakeside Daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550
doi: 10.1046/j.1523-1739.1993.07030542.x
Department of the Environment (2020) Senecio macrocarpus in Species Profile and Threats Database, Department of the Environment, Canberra. Available from: http://www.environment.gov.au/sprat . Accessed 27 May 2020.
Diekmann OE, Gouveia L, Perez JA, Gil-Rodriguez C, Serrão EA (2010) The possible origin of Zostera noltii in the Canary Islands and guidelines for restoration. Mar Biol 157:2109–2115
doi: 10.1007/s00227-010-1467-8
Dorrough J, Ash JE (1999) Using past and present habitat to predict the current distribution and abundance of a rare cryptic lizard, Delma impar (Pygopodidae). Austral Ecol 24:614–624
doi: 10.1046/j.1442-9993.1999.00995.x
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
pubmed: 17996036 pmcid: 2247476 doi: 10.1186/1471-2148-7-214
Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–241
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
pubmed: 15969739 doi: 10.1111/j.1365-294X.2005.02553.x
Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891
pubmed: 16951078 pmcid: 1602080 doi: 10.1534/genetics.106.059451
Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993
pubmed: 18780740 pmcid: 2567396 doi: 10.1534/genetics.108.092221
Frankham R (1996) Relationship between genetic variation and populations size in wildlife. Conserv Biol 10:1500–1508
doi: 10.1046/j.1523-1739.1996.10061500.x
Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140
Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618
pubmed: 25740414 doi: 10.1111/mec.13139
Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475
pubmed: 21486369 doi: 10.1111/j.1523-1739.2011.01662.x
Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, et al. (2017) Genetic management of fragmented animal and plant populations, 1st edn. Oxford University Press, Oxford
Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
doi: 10.1016/j.biocon.2013.12.036
Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260
doi: 10.1111/j.1469-1795.1999.tb00071.x
Georges A, Gruber B, Pauly GB, White D, Adams M, Young MJ et al. (2018) Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short-necked turtles (Chelidae: Emydura) of eastern Australia. Mol Ecol 27:5195–5213
pubmed: 30403418 doi: 10.1111/mec.14925
Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A (2005) Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 171:279–289
pubmed: 15944365 pmcid: 1456519 doi: 10.1534/genetics.104.035915
Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F‐statistics. Mol Ecol Resour 5:184–186
doi: 10.1111/j.1471-8286.2004.00828.x
Gruber B, Unmack PJ, Berry OF, Georges A (2018) DARTR: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699
pubmed: 29266847 doi: 10.1111/1755-0998.12745
Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information dependent genotyping. Nucl Acids Res 29:e25
pubmed: 11160945 doi: 10.1093/nar/29.4.e25 pmcid: 29632
Janes JK, Malenfant M, Andrew RL, Miller JM, Dupuis JR, Gorrell JC et al. (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602
pubmed: 28544181 doi: 10.1111/mec.14187
Jones RN (1997) The biogeography of the grasses and lowland grasslands of south-eastern Australia. Adv Nat Conserv 2:11–18
Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:1–10
doi: 10.3389/fgene.2015.00208
Knapp EE, Rice KJ (1996) Genetic structure and gene flow in Elymus glaucus (blue wildrye): implications for native grassland restoration. Restor Ecol 4:1–10
doi: 10.1111/j.1526-100X.1996.tb00101.x
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Ro AY (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191
pubmed: 25684545 pmcid: 4534335 doi: 10.1111/1755-0998.12387
Kronenberger JA, Funk WC, Smith JW, Fitzpatrick SW, Angeloni LM, Broder ED et al. (2017) Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Anim Conserv 20:3–11
doi: 10.1111/acv.12286
Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution (NY) 50:434–437
doi: 10.2307/2410812
Liddell E, Cook CN, Sunnucks P (2020) Evaluating the use of risk assessment frameworks in the identification of population units for biodiversity conservation. Wildl Res 47:208–216
doi: 10.1071/WR18170
Lippé C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15:1769–1780
pubmed: 16689897 doi: 10.1111/j.1365-294X.2006.02902.x
Lloyd MW, Burnett RK, Engelhardt KAM, Neel MC (2011) The structure of population genetic diversity in Vallisneria Americana in the Chesapeake Bay: implications for restoration. Conserv Genet 12:1269–1285
doi: 10.1007/s10592-011-0228-7
Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution (NY) 59:1437–1448
Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol Evol 10:143–147
pubmed: 21236983 doi: 10.1016/S0169-5347(00)89023-0
Melville J, Goebel S, Starr C, Keogh JS, Austin JJ (2007) Conservation genetics and species status of an endangered Australian dragon, Tympanocryptis pinguicolla (Reptilia: Agamidae). Conserv Genet 8:185–195
doi: 10.1007/s10592-006-9161-6
Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 22:22–37
doi: 10.1111/mec.12995
Morgan JW (1995) Ecological studies of the endangered Rutidosis leptorrhynchoides: I. Seed production, soil seed bank dynamics, population density and their effects on recruitment. Aust J Bot 43:1–11
doi: 10.1071/BT9950001
Moritz C (1999) Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 130:217–228
doi: 10.1111/j.1601-5223.1999.00217.x
Murray BG, Young AG (2001) Widespread chromosome variation in the endangered grassland forb Rutidosis leptorrhynchoides F. Muell. (Asteraceae: Gnaphalieae). Ann Bot 87:83–90
doi: 10.1006/anbo.2000.1307
NSW Office of Environment and Heritage (2012) National Recovery Plan for Button Wrinklewort Rutidosis leptorrhynchoides. NSW Office of Environment and Heritage, Hurstville
Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114
doi: 10.1078/1433-8319-00006
Pacioni C, Hunt H, Allentoft ME, Vaughan TG, Wayne AF, Baynes A et al. (2015) Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol Ecol 24:5813–5828
pubmed: 26497007 doi: 10.1111/mec.13430
Pavlova A, Selwood P, Harrisson KA, Murray N, Quin B, Menkhorst P et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biol Conserv 174:136–146
doi: 10.1016/j.biocon.2014.04.005
Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8:1–17
doi: 10.1371/journal.pgen.1002967
Pickup M, Field DL, Rowell DM, Young AG (2012) Predicting local adaptation in fragmented plant populations: Implications for restoration genetics. Evol Appl 5:913–924
pubmed: 23346235 pmcid: 3552408 doi: 10.1111/j.1752-4571.2012.00284.x
Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proc R Soc B Biol Sci 280:20122058
doi: 10.1098/rspb.2012.2058
Pickup M, Young AG (2008) Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity (Edinb) 100:268–274
doi: 10.1038/sj.hdy.6801070
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN et al. (2015) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752
doi: 10.1126/science.1246752
Potter S, Neaves LE, Lethbridge M, Eldridge MDB (2020) Understanding historical demographic processes to inform contemporary conservation of an arid zone specialist: the yellow-footed rock-wallaby. Genes (Basel) 11:1–24
doi: 10.3390/genes11020154
Powell JM (1969) The squatting occupation of Victoria 1834-60. Aust Geogr Stud 7:9–27
doi: 10.1111/j.1467-8470.1969.tb00196.x
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Pritchard JK, Wen W (2003) Documentation for STRUCTURE Software: Version 2.
Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589
pubmed: 24700103 pmcid: 4063916 doi: 10.1534/genetics.114.164350
Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:1–6
doi: 10.1111/conl.12412
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard M (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904
pubmed: 29718447 pmcid: 6101584 doi: 10.1093/sysbio/syy032
Rodger YS, Greenbaum G, Silver M, Bar-david S, Winters G (2018) Detecting hierarchical levels of connectivity in a population of Acacia tortilis at the northern edge of the species’ global distribution: combining classical population genetics and network analyses. PLoS ONE 13:1–16
doi: 10.1371/journal.pone.0194901
Rojas D, Lima AP, Momigliano P, Ivo P, Dudaniec RY, Sauer TC et al. (2020) The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity 124:439–456
Scarlett NH, Parsons RF (1990) Conservation biology of the southern Australian daisy Rutidosis leptorrhynchoides. In: Clark TW, Seebeck JH (eds) Management and conservation of small populations. Chicago Zoological Society, Chicago, p 195–205
Sinclair SJ (2010) National recovery plan for the large-fruit groundsel Senecio macrocarpus. Department of Sustainability and Environment, Melbourne
Sjogren P, Wyoni PI (1994) Conservation genetics and detection of rare alleles in finite populations. Conserv Biol 8:267–270
doi: 10.1046/j.1523-1739.1994.08010267.x
Spalink D, Mackay R, Sytsma KJ (2019) Phylogeography, population genetics and distribution modelling reveal vulnerability of Scirpus longii (Cyperaceae) and the Atlantic Coastal Plain Flora to climate change. Mol Ecol 28:2046–2061
Team RC (2018) R: a language and environment for statistical computing
Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-Allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397
pubmed: 17230399 doi: 10.1086/511313
Weaver JC (1996) Beyond the fatal shore: pastoral squatting and the occupation of Australia. Am Hist Rev 101:981–1007
doi: 10.2307/2169631
Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA et al. (2011) Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol Appl 4:709–725
pubmed: 22287981 pmcid: 3265713 doi: 10.1111/j.1752-4571.2011.00192.x
Weeks AR, Stoklosa J, Hoffmann AA (2016) Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front Zool 13:1–9
doi: 10.1186/s12983-016-0163-z
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (NY) 38:1358–1370
Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhychoides with different levels of correlated paternity. Genet Res 79:219–226
Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49
pubmed: 25435267 doi: 10.1016/j.tree.2014.10.009
Young AG, Brown AHD, Murray BG, Thrall PH, Miller CH (2000) Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides. In: Young AG, Clarke G (eds) Genetics, demography and viability of fragmented populations, Cambridge University Press, London, p 335–359
Young AG, Brown AHD, Zich FC (1999) Genetic structure of fragmented populations of the endangered Daisy Rutidosis leptorrhynchoides. Cons Biol 13:256–265
Young AG, Miller C, Gregory E, Langston A (2000) Sporophytic self-incompatibility in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Aust J Bot 48:667–672
Young AG, Murray BG (2000) Genetic bottlenecks and dysgenic gene flow into re-established populations of the grassland daisy, Rutidosis leptorrhynchoides. Aust J Bot 48:409–416
Young AG, Pickup M (2010) Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. J Appl Ecol 47:541–548
doi: 10.1111/j.1365-2664.2010.01798.x

Auteurs

Yael S Rodger (YS)

School of Biological Sciences, Clayton Campus, Monash University, Clayton, VIC, Australia. yael.rodger@monash.edu.

Alexandra Pavlova (A)

School of Biological Sciences, Clayton Campus, Monash University, Clayton, VIC, Australia.

Steve Sinclair (S)

Arthur Rylah Institute, Department of Environment, Land Water and Planning, Heidelberg, VIC, Australia.

Melinda Pickup (M)

Greening Australia Ltd, Perth, WA, Australia.

Paul Sunnucks (P)

School of Biological Sciences, Clayton Campus, Monash University, Clayton, VIC, Australia.

Articles similaires

Humans Australia Female Male Adult
Lakes Salinity Archaea Bacteria Microbiota
Eimeria tenella Animals Antigens, Protozoan Chickens Genetic Variation
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH