The impact of oxytocin on neurite outgrowth and synaptic proteins in Magel2-deficient mice.
Magel2
autism
development
oxytocin
synaptic proteins
Journal
Developmental neurobiology
ISSN: 1932-846X
Titre abrégé: Dev Neurobiol
Pays: United States
ID NLM: 101300215
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
20
01
2021
received:
24
09
2020
accepted:
15
02
2021
pubmed:
21
2
2021
medline:
1
4
2022
entrez:
20
2
2021
Statut:
ppublish
Résumé
Oxytocin contributes to the regulation of cytoskeletal and synaptic proteins and could, therefore, affect the mechanisms of neurodevelopmental disorders, including autism. Both the Prader-Willi syndrome and Schaaf-Yang syndrome exhibit autistic symptoms involving the MAGEL2 gene. Magel2-deficient mice show a deficit in social behavior that is rescued following the postnatal administration of oxytocin. Here, in Magel2-deficient mice, we showed that the neurite outgrowth of primary cultures of immature hippocampal neurons is reduced. Treatment with oxytocin reversed this abnormality. In the hippocampus of Magel2-deficient pups, we further demonstrated that several transcripts of neurite outgrowth-associated proteins, synaptic vesicle proteins, and cell-adhesion molecules are decreased. In the juvenile stage, when neurons are mature, normalization or even overexpression of most of these markers was observed, suggesting a delay in the neuronal maturation of Magel2-deficient pups. Moreover, we found reduced transcripts of the excitatory postsynaptic marker, Psd95 in the hippocampus and we observed a decrease of PSD95/VGLUT2 colocalization in the hippocampal CA1 and CA3 regions in Magel2-deficient mice, indicating a defect in glutamatergic synapses. Postnatal administration of oxytocin upregulated postsynaptic transcripts in pups; however, it did not restore the level of markers of glutamatergic synapses in Magel2-deficient mice. Overall, Magel2 deficiency leads to abnormal neurite outgrowth and reduced glutamatergic synapses during development, suggesting abnormal neuronal maturation. Oxytocin stimulates the expression of numerous genes involved in neurite outgrowth and synapse formation in early development stages. Postnatal oxytocin administration has a strong effect on development that should be considered for certain neuropsychiatric conditions in infancy.
Substances chimiques
Antigens, Neoplasm
0
Magel2 protein, mouse
0
Proteins
0
Oxytocin
50-56-6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
366-388Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Arastoo, M., Hacker, C., Popovics, P., Lucocq, J. M., & Stewart, A. J. (2016). Phospholipase C-η2 interacts with nuclear and cytoplasmic LIMK-1 during retinoic acid-stimulated neurite growth. Histochemistry and Cell Biology, 145(2), 163-173. https://doi.org/10.1007/s00418-015-1390-7
Arsenault, J., Gholizadeh, S., Niibori, Y., Pacey, L. K., Halder, S. K., Koxhioni, E., Konno, A., Hirai, H., & Hampson, D. R. (2016). FMRP expression levels in mouse central nervous system neurons determine behavioral phenotype. Human Gene Therapy, 27(12), 982-996. https://doi.org/10.1089/hum.2016.090
Ates, T., Oncul, M., Dilsiz, P., Topcu, I. C., Civas, C. C., Alp, M. I., Aklan, I., Ates Oz, E., Yavuz, Y., Yilmaz, B., Sayar Atasoy, N., & Atasoy, D. (2019). Inactivation of Magel2 suppresses oxytocin neurons through synaptic excitation-inhibition imbalance. Neurobiology of Disease, 121, 58-64. https://doi.org/10.1016/j.nbd.2018.09.017
Bakos, J., Bacova, Z., Grant, S. G., Castejon, A. M., & Ostatnikova, D. (2015). Are molecules involved in neuritogenesis and axon guidance related to autism pathogenesis? Neuromolecular Medicine, 17(3), 297-304. https://doi.org/10.1007/s12017-015-8357-7
Bakos, J., Lestanova, Z., Strbak, V., Havranek, T., & Bacova, Z. (2014). Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat. Neuropeptides, 48(5), 281-286. https://doi.org/10.1016/j.npep.2014.06.004
Bertoni, A., Schaller, F., Tyzio, R., Gaillard, S., Santini, F., Xolin, M., Diabira, D., Vaidyanathan, R., Matarazzo, V., Medina, I., Hammock, E., Zhang, J., Chini, B., Gaiarsa, J. L., & Muscatelli, F. (2020). Acute neonatal oxytocin impacts hippocampal network development and restores adult social memory deficits in a mouse model of autism spectrum disorder. bioRxiv. https://doi.org/10.1101/2020.09.21.306217.s
Booker, S. A., & Vida, I. (2018). Morphological diversity and connectivity of hippocampal interneurons. Cell and Tissue Research, 373(3), 619-641. https://doi.org/10.1007/s00441-018-2882-2
Bottermann, M., Foss, S., Caddy, S. L., Clift, D., van Tienen, L. M., Vaysburd, M., Cruickshank, J., O'Connell, K., Clark, J., Mayes, K., Higginson, K., Lode, H. E., McAdam, M. B., Sandlie, I., Andersen, J. T., & James, L. C. (2019). Complement C4 prevents viral infection through capsid inactivation. Cell Host & Microbe, 25(4), 617-629.e7. https://doi.org/10.1016/j.chom.2019.02.016
Bozdagi, O., Sakurai, T., Papapetrou, D., Wang, X., Dickstein, D. L., Takahashi, N., Kajiwara, Y., Yang, M., Katz, A. M., Scattoni, M. L., Harris, M. J., Saxena, R., Silverman, J. L., Crawley, J. N., Zhou, Q., Hof, P. R., & Buxbaum, J. D. (2010). Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Molecular Autism, 1(1), 15. https://doi.org/10.1186/2040-2392-1-15
Busnelli, M., & Chini, B. (2018). Molecular basis of oxytocin receptor signalling in the brain: What we know and what we need to know. Current Topics in Behavioral Neurosciences, 35, 3-29. https://doi.org/10.1007/7854_2017_6
Cao, W., Deng, S., & Pocock, R. (2019). The UIG-1/CDC-42 guanine nucleotide exchange factor acts in parallel to CED-10/Rac1 during axon outgrowth in Caenorhabditis elegans. Small GTPases, 1-7. Advance online publication. https://doi.org/10.1080/21541248.2019.1610302
Clagett-Dame, M., McNeill, E. M., & Muley, P. D. (2006). Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. Journal of Neurobiology, 66(7), 739-756. https://doi.org/10.1002/neu.20241
Cloarec, R., Riffault, B., Dufour, A., Rabiei, H., Gouty-Colomer, L. A., Dumon, C., Guimond, D., Bonifazi, P., Eftekhari, S., Lozovaya, N., Ferrari, D. C., & Ben-Ari, Y. (2019). Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. Science Advances, 5(1), eaav0394. https://doi.org/10.1126/sciadv.aav0394
Crutcher, E., Pal, R., Naini, F., Zhang, P., Laugsch, M., Kim, J., Bajic, A., & Schaaf, C. P. (2019). mTOR and autophagy pathways are dysregulated in murine and human models of Schaaf-Yang syndrome. Scientific Reports, 9(1), 15935. https://doi.org/10.1038/s41598-019-52287-2
Dorval, V., Smith, P. Y., Delay, C., Calvo, E., Planel, E., Zommer, N., Buée, L., & Hébert, S. S. (2012). Gene network and pathway analysis of mice with conditional ablation of Dicer in post-mitotic neurons. PLoS One, 7(8), e44060. https://doi.org/10.1371/journal.pone.0044060
Du, Z., Tertrais, M., Courtand, G., Leste-Lasserre, T., Cardoit, L., Masmejean, F., Halgand, C., Cho, Y. H., & Garret, M. (2017). Differential alteration in expression of striatal GABAAR subunits in mouse models of Huntington's disease. Frontiers in Molecular Neuroscience, 10, 198. https://doi.org/10.3389/fnmol.2017.00198
Fountain, M. D., Tao, H., Chen, C. A., Yin, J., & Schaaf, C. P. (2017). Magel2 knockout mice manifest altered social phenotypes and a deficit in preference for social novelty. Genes, Brain, and Behavior, 16(6), 592-600. https://doi.org/10.1111/gbb.12378
Gilbert, J., & Man, H. Y. (2017). Fundamental elements in autism: From neurogenesis and neurite growth to synaptic plasticity. Frontiers in Cellular Neuroscience, 11, 359. https://doi.org/10.3389/fncel.2017.00359
Gordeeva, O., Gordeev, A., & Khaydukov, S. (2019). Expression dynamics of Mage family genes during self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Oncotarget, 10(35), 3248-3266. https://doi.org/10.18632/oncotarget.26933
Hao, Y. H., Doyle, J. M., Ramanathan, S., Gomez, T. S., Jia, D., Xu, M., Chen, Z. J., Billadeau, D. D., Rosen, M. K., & Potts, P. R. (2013). Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell, 152(5), 1051-1064. https://doi.org/10.1016/j.cell.2013.01.051
Hart, M. P., & Hobert, O. (2018). Neurexin controls plasticity of a mature, sexually dimorphic neuron. Nature, 553(7687), 165-170. https://doi.org/10.1038/nature25192
Ishaq, M., Lin, B. R., Bosche, M., Zheng, X., Yang, J., Huang, D., Lempicki, R. A., Aguilera-Gutierrez, A., & Natarajan, V. (2011). LIM kinase 1 - dependent cofilin 1 pathway and actin dynamics mediate nuclear retinoid receptor function in T lymphocytes. BMC Molecular Biology, 12, 41. https://doi.org/10.1186/1471-2199-12-41
Jurek, B., & Neumann, I. D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews, 98(3), 1805-1908. https://doi.org/10.1152/physrev.00031.2017
Kawanai, T., Ago, Y., Watanabe, R., Inoue, A., Taruta, A., Onaka, Y., Hasebe, S., Hashimoto, H., Matsuda, T., & Takuma, K. (2016). Prenatal exposure to histone deacetylase inhibitors affects gene expression of autism-related molecules and delays neuronal maturation. Neurochemical Research, 41(10), 2574-2584. https://doi.org/10.1007/s11064-016-1969-y
Kovalevich, J., & Langford, D. (2013). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods in Molecular Biology, 1078, 9-21. https://doi.org/10.1007/978-1-62703-640-5_2
Kozlov, S. V., Bogenpohl, J. W., Howell, M. P., Wevrick, R., Panda, S., Hogenesch, J. B., Muglia, L. J., Van Gelder, R. N., Herzog, E. D., & Stewart, C. L. (2007). The imprinted gene Magel2 regulates normal circadian output. Nature Genetics, 39(10), 1266-1272. https://doi.org/10.1038/ng2114
Lestanova, Z., Bacova, Z., Kiss, A., Havranek, T., Strbak, V., & Bakos, J. (2016). Oxytocin increases neurite length and expression of cytoskeletal proteins associated with neuronal growth. Journal of Molecular Neuroscience, 59(2), 184-192. https://doi.org/10.1007/s12031-015-0664-9
Lin, Y. T., Hsieh, T. Y., Tsai, T. C., Chen, C. C., Huang, C. C., & Hsu, K. S. (2018). Conditional deletion of hippocampal CA2/CA3a oxytocin receptors impairs the persistence of long-term social recognition memory in mice. The Journal of Neuroscience, 38(5), 1218-1231. https://doi.org/10.1523/JNEUROSCI.1896-17.2017
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Maillard, J., Park, S., Croizier, S., Vanacker, C., Cook, J. H., Prevot, V., Tauber, M., & Bouret, S. G. (2016). Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Human Molecular Genetics, 25(15), 3208-3215. https://doi.org/10.1093/hmg/ddw169
Martin, V., Allaïli, N., Euvrard, M., Marday, T., Riffaud, A., Franc, B., Mocaër, E., Gabriel, C., Fossati, P., Lehericy, S., & Lanfumey, L. (2017). Effect of agomelatine on memory deficits and hippocampal gene expression induced by chronic social defeat stress in mice. Scientific Reports, 8, 45907. https://doi.org/10.1038/srep45907
Matarazzo, V., & Muscatelli, F. (2013). Natural breaking of the maternal silence at the mouse and human imprinted Prader-Willi locus: A whisper with functional consequences. Rare Diseases, 1, e27228. https://doi.org/10.4161/rdis.27228
McEwen, B. B. (2004). Brain-fluid barriers: Relevance for theoretical controversies regarding vasopressin and oxytocin memory research. Advances in Pharmacology, 50, 531-708. https://doi.org/10.1016/S1054-3589(04)50014-5
Meira, T., Leroy, F., Buss, E. W., Oliva, A., Park, J., & Siegelbaum, S. A. (2018). A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nature Communications, 9(1), 4163. https://doi.org/10.1038/s41467-018-06501-w
Meziane, H., Schaller, F., Bauer, S., Villard, C., Matarazzo, V., Riet, F., Guillon, G., Lafitte, D., Desarmenien, M. G., Tauber, M., & Muscatelli, F. (2015). An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi syndrome and autism. Biological Psychiatry, 78(2), 85-94. https://doi.org/10.1016/j.biopsych.2014.11.010
Mitchell, D. C., Bryan, B. A., Liu, J. P., Liu, W. B., Zhang, L., Qu, J., Zhou, X., Liu, M., & Li, D. W. (2007). Developmental expression of three small GTPases in the mouse eye. Molecular Vision, 13, 1144-1153.
Muscatelli, F., Desarménien, M. G., Matarazzo, V., & Grinevich, V. (2018). Oxytocin signaling in the early life of mammals: Link to neurodevelopmental disorders associated with ASD. Current Topics in Behavioral Neurosciences, 35, 239-268. https://doi.org/10.1007/7854_2017_16
Naskar, S., Narducci, R., Balzani, E., Cwetsch, A. W., Tucci, V., & Cancedda, L. (2019). The development of synaptic transmission is time-locked to early social behaviors in rats. Nature Communications, 10(1), 1195. https://doi.org/10.1038/s41467-019-09156-3
Prange, O., Wong, T. P., Gerrow, K., Wang, Y. T., & El-Husseini, A. (2004). A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proceedings of the National Academy of Sciences of the United States of America, 101(38), 13915-13920. https://doi.org/10.1073/pnas.0405939101
Raam, T., McAvoy, K. M., Besnard, A., Veenema, A. H., & Sahay, A. (2017). Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nature Communications, 8(1), 2001. https://doi.org/10.1038/s41467-017-02173-0
Reichova, A., Zatkova, M., Bacova, Z., & Bakos, J. (2018). Abnormalities in interactions of Rho GTPases with scaffolding proteins contribute to neurodevelopmental disorders. Journal of Neuroscience Research, 96(5), 781-788. https://doi.org/10.1002/jnr.24200
Ripamonti, S., Ambrozkiewicz, M. C., Guzzi, F., Gravati, M., Biella, G., Bormuth, I., Hammer, M., Tuffy, L. P., Sigler, A., Kawabe, H., Nishimori, K., Toselli, M., Brose, N., Parenti, M., & Rhee, J. (2017). Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. eLife, 6, e22466. https://doi.org/10.7554/eLife.22466
Ruhl, D. A., Bomba-Warczak, E., Watson, E. T., Bradberry, M. M., Peterson, T. A., Basu, T., Frelka, A., Evans, C. S., Briguglio, J. S., Basta, T., Stowell, M., Savas, J. N., Roopra, A., Pearce, R. A., Piper, R. C., & Chapman, E. R. (2019). Synaptotagmin 17 controls neurite outgrowth and synaptic physiology via distinct cellular pathways. Nature Communications, 10(1), 3532. https://doi.org/10.1038/s41467-019-11459-4
Runkel, F., Rohlmann, A., Reissner, C., Brand, S. M., & Missler, M. (2013). Promoter-like sequences regulating transcriptional activity in neurexin and neuroligin genes. Journal of Neurochemistry, 127(1), 36-47. https://doi.org/10.1111/jnc.12372
Schaaf, C. P., Gonzalez-Garay, M. L., Xia, F., Potocki, L., Gripp, K. W., Zhang, B., Peters, B. A., McElwain, M. A., Drmanac, R., Beaudet, A. L., Caskey, C. T., & Yang, Y. (2013). Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nature Genetics, 45(11), 1405-1408. https://doi.org/10.1038/ng.2776
Schaller, F., Watrin, F., Sturny, R., Massacrier, A., Szepetowski, P., & Muscatelli, F. (2010). A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Human Molecular Genetics, 19(24), 4895-4905. https://doi.org/10.1093/hmg/ddq424
Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y.-H., Hicks, J., Spence, S. J., Lee, A. T., Puura, K., Lehtimaki, T., … Wigler, M. (2007). Strong association of de novo copy number mutations with autism. Science, 316(5823), 445-449. https://doi.org/10.1126/science.1138659
Urreizti, R., Cueto-Gonzalez, A. M., Franco-Valls, H., Mort-Farre, S., Roca-Ayats, N., Ponomarenko, J., Cozzuto, L., Company, C., Bosio, M., Ossowski, S., Montfort, M., Hecht, J., Tizzano, E. F., Cormand, B., Vilageliu, L., Opitz, J. M., Neri, G., Grinberg, D., & Balcells, S. (2017). A de novo nonsense mutation in MAGEL2 in a patient initially diagnosed as Opitz-C: Similarities between Schaaf-Yang and Opitz-C syndromes. Scientific Reports, 7, 44138. https://doi.org/10.1038/srep44138
Varoqueaux, F., Aramuni, G., Rawson, R. L., Mohrmann, R., Missler, M., Gottmann, K., Zhang, W., Südhof, T. C., & Brose, N. (2006). Neuroligins determine synapse maturation and function. Neuron, 51(6), 741-754. https://doi.org/10.1016/j.neuron.2006.09.003
Villar-Cheda, B., Dominguez-Meijide, A., Joglar, B., Rodriguez-Perez, A. I., Guerra, M. J., & Labandeira-Garcia, J. L. (2012). Involvement of microglial RhoA/Rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiology of Disease, 47(2), 268-279. https://doi.org/10.1016/j.nbd.2012.04.010
Wang, W., Wyckoff, J. B., Goswami, S., Wang, Y., Sidani, M., Segall, J. E., & Condeelis, J. S. (2007). Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Research, 67(8), 3505-3511. https://doi.org/10.1158/0008-5472.CAN-06-3714
Yamamoto, Y., Liang, M., Munesue, S., Deguchi, K., Harashima, A. I., Furuhara, K., Yuhi, T., Zhong, J., Akther, S., Goto, H., Eguchi, Y., Kitao, Y., Hori, O., Shiraishi, Y., Ozaki, N., Shimizu, Y. U., Kamide, T., Yoshikawa, A., Hayashi, Y., … Higashida, H. (2019). Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Communications Biology, 2, 76. https://doi.org/10.1038/s42003-019-0325-6
Yanagisawa, H., Komuta, Y., Kawano, H., Toyoda, M., & Sango, K. (2010). Pleiotrophin induces neurite outgrowth and up-regulates growth-associated protein (GAP)-43 mRNA through the ALK/GSK3beta/beta-catenin signaling in developing mouse neurons. Neuroscience Research, 66(1), 111-116. https://doi.org/10.1016/j.neures.2009.10.002
You, G. Y., Lee, J. O., Kim, J. H., Kim, N., Lee, S. K., Moon, J. W., Jie, S., Lee, H. J., Kim, S. J., Park, S. H., & Kim, H. S. (2013). Tiam-1, a GEF for Rac1, plays a critical role in metformin-mediated glucose uptake in C2C12 cells. Cellular Signalling, 25(12), 2558-2565. https://doi.org/10.1016/j.cellsig.2013.08.018
Young, W. S., & Song, J. (2020). Characterization of oxytocin receptor expression within various neuronal populations of the mouse dorsal hippocampus. Frontiers in Molecular Neuroscience, 13, 40. https://doi.org/10.3389/fnmol.2020.00040
Zatkova, M., Bakos, J., Hodosy, J., & Ostatnikova, D. (2016). Synapse alterations in autism: Review of animal model findings. Biomedical Papers, 160(2), 201-210. https://doi.org/10.5507/bp.2015.066
Zatkova, M., Reichova, A., Bacova, Z., & Bakos, J. (2019). Activation of the oxytocin receptor modulates the expression of synaptic adhesion molecules in a cell-specific manner. Journal of Molecular Neuroscience, 68(2), 171-180. https://doi.org/10.1007/s12031-019-01296-x
Zatkova, M., Reichova, A., Bacova, Z., Strbak, V., Kiss, A., & Bakos, J. (2018). Neurite outgrowth stimulated by oxytocin is modulated by inhibition of the calcium voltage-gated channels. Cellular and Molecular Neurobiology, 38(1), 371-378. https://doi.org/10.1007/s10571-017-0503-3
Zeidán-Chuliá, F., Rybarczyk-Filho, J. L., Salmina, A. B., de Oliveira, B. H., Noda, M., & Moreira, J. C. (2013). Exploring the multifactorial nature of autism through computational systems biology: Calcium and the Rho GTPase RAC1 under the spotlight. Neuromolecular Medicine, 15(2), 364-383. https://doi.org/10.1007/s12017-013-8224-3
Zhou, Y., Kaiser, T., Monteiro, P., Zhang, X., Van der Goes, M. S., Wang, D., Barak, B., Zeng, M., Li, C., Lu, C., Wells, M., Amaya, A., Nguyen, S., Lewis, M., Sanjana, N., Zhou, Y., Zhang, M., Zhang, F., Fu, Z., & Feng, G. (2016). Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron, 89(1), 147-162. https://doi.org/10.1016/j.neuron.2015.11.023