Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 02 2021
Historique:
received: 09 09 2020
accepted: 05 02 2021
entrez: 23 2 2021
pubmed: 24 2 2021
medline: 15 12 2021
Statut: epublish

Résumé

Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.

Identifiants

pubmed: 33619350
doi: 10.1038/s41598-021-83813-w
pii: 10.1038/s41598-021-83813-w
pmc: PMC7900124
doi:

Substances chimiques

Azides 0
Sphingolipids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4300

Références

Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191. https://doi.org/10.1038/nrm.2017.107 (2018).
doi: 10.1038/nrm.2017.107 pubmed: 29165427
Saddoughi, S. A., Song, P. & Ogretmen, B. Roles of bioactive sphingolipids in cancer biology and therapeutics. Sub-cell. Biochem. 49, 413–440. https://doi.org/10.1007/978-1-4020-8831-5_16 (2008).
doi: 10.1007/978-1-4020-8831-5_16
Fischer, C. L. et al. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 56, 1157–1161. https://doi.org/10.1128/aac.05151-11 (2012).
doi: 10.1128/aac.05151-11 pubmed: 22155833 pmcid: 3294957
Bibel, D. J., Aly, R. & Shinefield, H. R. Antimicrobial activity of sphingosines. J. Invest. Dermatol. 98, 269–273 (1992).
doi: 10.1111/1523-1747.ep12497842
Becker, K. A. et al. Neutrophils kill reactive oxygen species-resistant Pseudomonas aeruginosa by sphingosine. Cell. Physiol. Biochem. 43, 1603–1616. https://doi.org/10.1159/000482024 (2017).
doi: 10.1159/000482024 pubmed: 29040968
Thormar, H. & Hilmarsson, H. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem. Phys. Lipid. 150, 1–11. https://doi.org/10.1016/j.chemphyslip.2007.06.220 (2007).
doi: 10.1016/j.chemphyslip.2007.06.220
Do, T. Q. et al. Lipids including cholesteryl linoleate and cholesteryl arachidonate contribute to the inherent antibacterial activity of human nasal fluid. J. Immunol. (Baltimore, Md.: 1950) 181, 4177–4187. https://doi.org/10.4049/jimmunol.181.6.4177 (2008).
doi: 10.4049/jimmunol.181.6.4177
Drake, D. R., Brogden, K. A., Dawson, D. V. & Wertz, P. W. Thematic review series: Skin lipids. Antimicrobial lipids at the skin surface. J. Lipid Res. 49, 4–11. https://doi.org/10.1194/jlr.R700016-JLR200 (2008).
doi: 10.1194/jlr.R700016-JLR200 pubmed: 17906220
Dongfack, M. D. et al. A new sphingolipid and furanocoumarins with antimicrobial activity from Ficus exasperata. Chem. Pharm. Bull. (Tokyo) 60, 1072–1075 (2012).
doi: 10.1248/cpb.c12-00279
El-Amraoui, B., Biard, J. F. & Fassouane, A. Haliscosamine: A new antifungal sphingosine derivative from the Moroccan marine sponge Haliclona viscosa. Springerplus 2, 252. https://doi.org/10.1186/2193-1801-2-252 (2013).
doi: 10.1186/2193-1801-2-252 pubmed: 23961377 pmcid: 3724984
Possemiers, S., Van Camp, J., Bolca, S. & Verstraete, W. Characterization of the bactericidal effect of dietary sphingosine and its activity under intestinal conditions. Int. J. Food Microbiol. 105, 59–70. https://doi.org/10.1016/j.ijfoodmicro.2005.05.007 (2005).
doi: 10.1016/j.ijfoodmicro.2005.05.007 pubmed: 16153732
Fischer, C. L. et al. Sphingoid bases are taken up by Escherichia coli and Staphylococcus aureus and induce ultrastructural damage. Skin Pharmacol. Physiol. 26, 36–44. https://doi.org/10.1159/000343175 (2013).
doi: 10.1159/000343175 pubmed: 23128426
Becam, J. et al. Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria. Sci. Rep. 7, 17627. https://doi.org/10.1038/s41598-017-18071-w (2017).
doi: 10.1038/s41598-017-18071-w pubmed: 29247204 pmcid: 5732201
Verhaegh, R., Becker, K. A., Edwards, M. J. & Gulbins, E. Sphingosine kills bacteria by binding to cardiolipin. J. Biol. Chem. https://doi.org/10.1074/jbc.RA119.012325 (2020).
doi: 10.1074/jbc.RA119.012325 pubmed: 32327486 pmcid: 7261797
Caugant, D. A. & Brynildsrud, O. B. Neisseria meningitidis: Using genomics to understand diversity, evolution and pathogenesis. Nat. Rev. Microbiol. 18, 84–96. https://doi.org/10.1038/s41579-019-0282-6 (2020).
doi: 10.1038/s41579-019-0282-6 pubmed: 31705134
Walter, T. et al. Incorporation studies of clickable ceramides in Jurkat cell plasma membranes. Chem. Commun. (Camb.) 53, 6836–6839. https://doi.org/10.1039/c7cc01220a (2017).
doi: 10.1039/c7cc01220a
Markert, S. M. et al. 3D subcellular localization with superresolution array tomography on ultrathin sections of various species. Methods Cell Biol. 140, 21–47. https://doi.org/10.1016/bs.mcb.2017.03.004 (2017).
doi: 10.1016/bs.mcb.2017.03.004 pubmed: 28528634
Markert, S. M. et al. Filling the gap: Adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome. Neurophotonics 3, 041802 (2016).
doi: 10.1117/1.NPh.3.4.041802
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. 40, 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3c2004::aid-anie2004%3e3.3.co;2-x (2001).
doi: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x
Collenburg, L. et al. A functionalized sphingolipid analogue for studying redistribution during activation in living T cells. J. Immunol. 196, 3951–3962. https://doi.org/10.4049/jimmunol.1502447 (2016).
doi: 10.4049/jimmunol.1502447 pubmed: 27036914
Solger, F. et al. A role of sphingosine in the intracellular survival of Neisseria gonorrhoeae. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2020.00215 (2020).
doi: 10.3389/fcimb.2020.00215 pubmed: 32477967 pmcid: 7235507
Lang, J. et al. Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nat. Commun. 11, 1338. https://doi.org/10.1038/s41467-020-15072-8 (2020).
doi: 10.1038/s41467-020-15072-8 pubmed: 32165633 pmcid: 7067866
Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).
doi: 10.1039/b901970g
Debets, M. F. et al. Bioconjugation with strained alkenes and alkynes. Acc. Chem. Res. 44, 805–815. https://doi.org/10.1021/ar200059z (2011).
doi: 10.1021/ar200059z pubmed: 21766804
Kristina, D., Micheva, N. O. R., Brad, B. & Stephen, J. S. Array tomography: Immunostaining and antibody elution. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5525 (2010).
doi: 10.1101/pdb.prot5525
Micheva, K. D. & Smith, S. J. Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36. https://doi.org/10.1016/j.neuron.2007.06.014 (2007).
doi: 10.1016/j.neuron.2007.06.014 pubmed: 17610815 pmcid: 2080672
Hayat, M. A. Colloidal Gold: Principles, Methods, and Applications, Vol 3 (Academic Press, New York, 1989).
Smith, S. J. Q&A: Array tomography. BMC Biol. 16, 98. https://doi.org/10.1186/s12915-018-0560-1 (2018).
doi: 10.1186/s12915-018-0560-1 pubmed: 30189863 pmcid: 6127925
Micheva, K. D., O’Rourke, N., Busse, B. & Smith, S. J. Array tomography: Immunostaining and antibody elution. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5525 (2010).
doi: 10.1101/pdb.prot5525 pubmed: 21041404
Micheva, K. D., O’Rourke, N., Busse, B. & Smith, S. J. Array tomography: High-resolution three-dimensional immunofluorescence. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.top89 (2010).
doi: 10.1101/pdb.top89 pubmed: 21041404
Schmitt, C. et al. A functional two-partner secretion system contributes to adhesion of Neisseria meningitidis to epithelial cells. J. Bacteriol. 189, 7968–7976 (2007).
doi: 10.1128/JB.00851-07
Turner, D. P. et al. Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect. Immun. 74, 2957–2964 (2006).
doi: 10.1128/IAI.74.5.2957-2964.2006
Scarselli, M. et al. Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol. Microbiol. 61, 631–644 (2006).
doi: 10.1111/j.1365-2958.2006.05261.x
Virji, M. Pathogenic neisseriae: Surface modulation, pathogenesis and infection control. Nat. Rev. Microbiol. 7, 274–286 (2009).
doi: 10.1038/nrmicro2097
Sa, E., Cunha, C., Griffiths, N. J. & Virji, M. Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000911 (2010).
doi: 10.1371/journal.ppat.1000911
Unkmeir, A. et al. Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol. Microbiol. 46, 933–946 (2002).
doi: 10.1046/j.1365-2958.2002.03222.x
Sohlenkamp, C. & Geiger, O. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 40, 133–159. https://doi.org/10.1093/femsre/fuv008 (2016).
doi: 10.1093/femsre/fuv008 pubmed: 25862689
Speert, D. P., Wannamaker, L. W., Gray, E. D. & Clawson, C. C. Bactericidal effect of oleic acid on group A streptococci: Mechanism of action. Infect. Immun. 26, 1202–1210 (1979).
doi: 10.1128/IAI.26.3.1202-1210.1979
Knapp, H. R. & Melly, M. A. Bactericidal effects of polyunsaturated fatty acids. J. Infect. Dis. 154, 84–94. https://doi.org/10.1093/infdis/154.1.84 (1986).
doi: 10.1093/infdis/154.1.84 pubmed: 3086465
Wang, L. L. & Johnson, E. A. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl. Environ. Microbiol. 58, 624–629 (1992).
doi: 10.1128/AEM.58.2.624-629.1992
Bergsson, G., Arnfinnsson, J., Karlsson, S. M., Steingrimsson, O. & Thormar, H. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 42, 2290–2294 (1998).
doi: 10.1128/AAC.42.9.2290
Bergsson, G., Arnfinnsson, J., Steingrimsson, O. & Thormar, H. Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 109, 670–678. https://doi.org/10.1034/j.1600-0463.2001.d01-131.x (2001).
doi: 10.1034/j.1600-0463.2001.d01-131.x pubmed: 11890570
Skrivanova, E., Marounek, M., Dlouha, G. & Kanka, J. Susceptibility of Clostridium perfringens to C-C fatty acids. Lett. Appl. Microbiol. 41, 77–81. https://doi.org/10.1111/j.1472-765X.2005.01709.x (2005).
doi: 10.1111/j.1472-765X.2005.01709.x pubmed: 15960756
Preston, A., Mandrell, R. E., Gibson, B. W. & Apicella, M. A. The lipooligosaccharides of pathogenic gram-negative bacteria. Crit. Rev. Microbiol. 22, 139–180. https://doi.org/10.3109/10408419609106458 (1996).
doi: 10.3109/10408419609106458 pubmed: 8894399
Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science (New York, NY) 277, 1453–1462. https://doi.org/10.1126/science.277.5331.1453 (1997).
doi: 10.1126/science.277.5331.1453
Browning, D. F. et al. Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol. Microbiol. 87, 939–950. https://doi.org/10.1111/mmi.12144 (2013).
doi: 10.1111/mmi.12144 pubmed: 23350972
Van Elsland, D. M. et al. Correlative light and electron microscopy reveals discrepancy between gold and fluorescence labelling. J. Microsc. 267, 309–317. https://doi.org/10.1111/jmi.12567 (2017).
doi: 10.1111/jmi.12567
Ramil, C. P. & Lin, Q. Bioorthogonal chemistry: Strategies and recent developments. Chem. Commun. (Camb.) 49, 11007–11022. https://doi.org/10.1039/c3cc44272a (2013).
doi: 10.1039/c3cc44272a
Strobel, M., Helmprobst F., Pauli, M., Heckmann, M. , Lillesaar C. & Stigloher C. Multiscale Imaging with Photons, Electrons, and Ions in Volume Microscopy Vol. 155 (ed R. Schröder, Hummel, E., Burgold, S., Wacker, I.) (2020).
McGuinness, B. T. et al. Point mutation in meningococcal por A gene associated with increased endemic disease. Lancet 337, 514–517 (1991).
doi: 10.1016/0140-6736(91)91297-8
Prieto, D., Aparicio, G., Morande, P. E. & Zolessi, F. R. A fast, low cost, and highly efficient fluorescent DNA labeling method using methyl green. Histochem. Cell Biol. 142, 335–345. https://doi.org/10.1007/s00418-014-1215-0 (2014).
doi: 10.1007/s00418-014-1215-0 pubmed: 24671497
Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212. https://doi.org/10.1083/jcb.17.1.208 (1963).
doi: 10.1083/jcb.17.1.208 pubmed: 13986422 pmcid: 2106263
Steeghs, L. et al. Outer membrane composition of a lipopolysaccharide-deficient Neisseria meningitidis mutant. EMBO J. 20, 6937–6945. https://doi.org/10.1093/emboj/20.24.6937 (2001).
doi: 10.1093/emboj/20.24.6937 pubmed: 11742971 pmcid: 125796
Osborn, M. J., Gander, J. E., Parisi, E. & Carson, J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J. Biol. Chem. 247, 3962–3972 (1972).
doi: 10.1016/S0021-9258(19)45127-2
Naser, E. et al. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J. Lipid Res. 61, 896–910. https://doi.org/10.1194/jlr.RA120000682 (2020).
doi: 10.1194/jlr.RA120000682 pubmed: 32156719 pmcid: 7269768

Auteurs

Simon Peters (S)

Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Lena Kaiser (L)

Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Julian Fink (J)

Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Fabian Schumacher (F)

Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
Department of Toxicology, University of Potsdam, Nuthetal, Germany.
Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany.

Veronika Perschin (V)

Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Jan Schlegel (J)

Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Markus Sauer (M)

Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Christian Stigloher (C)

Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Burkhard Kleuser (B)

Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
Department of Toxicology, University of Potsdam, Nuthetal, Germany.

Jürgen Seibel (J)

Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.

Alexandra Schubert-Unkmeir (A)

Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany. aunkmeir@uni-wuerzburg.de.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Animals Dogs Dog Diseases Autophagy Immunohistochemistry
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH