Chromatin information content landscapes inform transcription factor and DNA interactions.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 02 2021
26 02 2021
Historique:
received:
26
11
2019
accepted:
29
01
2021
entrez:
27
2
2021
pubmed:
28
2
2021
medline:
16
3
2021
Statut:
epublish
Résumé
Interactions between transcription factors and chromatin are fundamental to genome organization and regulation and, ultimately, cell state. Here, we use information theory to measure signatures of organized chromatin resulting from transcription factor-chromatin interactions encoded in the patterns of the accessible genome, which we term chromatin information enrichment (CIE). We calculate CIE for hundreds of transcription factor motifs across human samples and identify two classes: low and high CIE. The 10-20% of common and tissue-specific high CIE transcription factor motifs, associate with higher protein-DNA residence time, including different binding site subclasses of the same transcription factor, increased nucleosome phasing, specific protein domains, and the genetic control of both chromatin accessibility and gene expression. These results show that variations in the information encoded in chromatin architecture reflect functional biological variation, with implications for cell state dynamics and memory.
Identifiants
pubmed: 33637709
doi: 10.1038/s41467-021-21534-4
pii: 10.1038/s41467-021-21534-4
pmc: PMC7910283
doi:
Substances chimiques
Chromatin
0
DNA-Binding Proteins
0
Nucleosomes
0
Transcription Factors
0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1307Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK117960
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG000040
Pays : United States
Références
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Nature. 2012 Apr 11;484(7393):251-5
pubmed: 22498630
Nat Methods. 2014 Jan;11(1):73-78
pubmed: 24317252
Nucleic Acids Res. 2014 Oct 29;42(19):11865-78
pubmed: 25294828
Nat Methods. 2013 Dec;10(12):1213-8
pubmed: 24097267
Nature. 2013 Sep 26;501(7468):506-11
pubmed: 24037378
Curr Opin Struct Biol. 2009 Feb;19(1):65-71
pubmed: 19208466
Nat Biotechnol. 2011 Jun 07;29(6):480-3
pubmed: 21654662
Nat Genet. 2017 May;49(5):719-729
pubmed: 28346445
Bioinformatics. 2000 Jan;16(1):16-23
pubmed: 10812473
Cell Rep. 2019 Sep 3;28(10):2689-2703.e4
pubmed: 31484078
Mol Cell. 2014 Oct 23;56(2):275-285
pubmed: 25242143
Genome Res. 2012 Sep;22(9):1798-812
pubmed: 22955990
Nat Methods. 2015 Nov;12(11):1061-3
pubmed: 26366987
Genome Biol. 2019 Feb 26;20(1):45
pubmed: 30808370
Bioinformatics. 2011 Apr 1;27(7):1017-8
pubmed: 21330290
Bioinformatics. 2012 Jan 1;28(1):56-62
pubmed: 22072382
Genome Res. 2008 Jan;18(1):1-12
pubmed: 18032727
Nat Commun. 2017 Aug 22;8(1):313
pubmed: 28827596
Curr Opin Cell Biol. 2010 Jun;22(3):403-11
pubmed: 20413286
Bioinformatics. 2016 Jul 15;32(14):2196-8
pubmed: 27153584
Bioinformatics. 2012 Oct 1;28(19):2520-2
pubmed: 22908215
Nat Commun. 2019 Mar 19;10(1):1260
pubmed: 30890710
Genome Res. 2012 May;22(5):939-46
pubmed: 22267522
Mol Metab. 2016 Jan 11;5(3):233-244
pubmed: 26977395
Genome Res. 2015 Nov;25(11):1757-70
pubmed: 26314830
Elife. 2017 May 03;6:
pubmed: 28467304
Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360
pubmed: 30398656
Genome Res. 2014 Jul;24(7):1147-56
pubmed: 24714811
Cell. 2014 Sep 11;158(6):1431-1443
pubmed: 25215497
Nature. 2017 Oct 11;550(7675):204-213
pubmed: 29022597
Curr Protoc Mol Biol. 2015 Jan 05;109:21.29.1-21.29.9
pubmed: 25559105
Nucleic Acids Res. 2017 Jul 27;45(13):e119
pubmed: 28591841
Nat Biotechnol. 2014 Feb;32(2):171-178
pubmed: 24441470
Nature. 2018 Oct;562(7725):76-81
pubmed: 30250250
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Bioinformatics. 2005 Oct 15;21(20):3940-1
pubmed: 16096348
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2301-2306
pubmed: 28193859
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18318-23
pubmed: 22025700
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Genome Res. 2011 Mar;21(3):447-55
pubmed: 21106904
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7222-E7230
pubmed: 29987030
Nature. 2015 Oct 1;526(7571):68-74
pubmed: 26432245
Genome Res. 2012 Sep;22(9):1735-47
pubmed: 22955985
Nat Commun. 2016 Jun 29;7:11764
pubmed: 27353450
PLoS Genet. 2008 Jul 25;4(7):e1000138
pubmed: 18654629
Nat Commun. 2021 Feb 26;12(1):1307
pubmed: 33637709
Genes Dev. 2011 Nov 1;25(21):2227-41
pubmed: 22056668
PLoS One. 2015 Mar 04;10(3):e0118432
pubmed: 25738806
Nat Methods. 2017 Oct;14(10):959-962
pubmed: 28846090
PLoS Genet. 2012;8(11):e1003036
pubmed: 23166509
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Nat Commun. 2017 Nov 7;8(1):1358
pubmed: 29116076
Trends Genet. 2009 Aug;25(8):335-43
pubmed: 19596482
Genome Biol. 2007;8(2):R24
pubmed: 17324271
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Cell Rep. 2017 May 23;19(8):1710-1722
pubmed: 28538187
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12161-12166
pubmed: 31147470
BMC Genomics. 2015 Feb 14;16:87
pubmed: 25765714
Bioinformatics. 2015 Aug 15;31(16):2601-6
pubmed: 25886982
Genome Res. 2014 Dec;24(12):2033-40
pubmed: 25079858
Cell. 2018 Feb 8;172(4):650-665
pubmed: 29425488
Nat Commun. 2017 May 18;8:15452
pubmed: 28516912
Bioinformatics. 2015 Aug 1;31(15):2595-7
pubmed: 25810428
Nat Immunol. 2017 Apr;18(4):412-421
pubmed: 28166218
PLoS Genet. 2019 Jan 17;15(1):e1007891
pubmed: 30653501