Gut dysbiosis and mortality in hemodialysis patients.


Journal

NPJ biofilms and microbiomes
ISSN: 2055-5008
Titre abrégé: NPJ Biofilms Microbiomes
Pays: United States
ID NLM: 101666944

Informations de publication

Date de publication:
03 03 2021
Historique:
received: 14 06 2020
accepted: 27 01 2021
entrez: 4 3 2021
pubmed: 5 3 2021
medline: 23 9 2021
Statut: epublish

Résumé

Little is known about the relationship between gut dysbiosis, inflammation, and adverse outcomes in patients with chronic kidney disease. We examined the association of microbial diversity with all-cause mortality in hemodialysis patients. The gut microbiota was assessed by 16S ribosomal RNA gene sequencing. During a median follow-up of 2.1 years, the adjusted risk of death among patients with higher diversity (above median) was 74% lower than that among patients with lower diversity (below median). We then compared the microbial composition between nonsurvivors and survivors in a matched case-control study. We observed significantly lower microbial diversity and higher proinflammatory cytokines among nonsurvivors than survivors. Specifically, the relative abundance of Succinivibrio and Anaerostipes, two short-chain fatty acid-producing bacteria, was markedly reduced in nonsurvivors. Thus, a unique gut microbial composition is associated with an increased risk of mortality among hemodialysis patients and may be used to identify subjects with a poor prognosis.

Identifiants

pubmed: 33658514
doi: 10.1038/s41522-021-00191-x
pii: 10.1038/s41522-021-00191-x
pmc: PMC7930281
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Banques de données

Dryad
['10.5061/dryad.k3j9kd55d']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

20

Références

United States Renal Data System. 2019 USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (2019).
de Jager, D. J. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).
pubmed: 19861670 doi: 10.1001/jama.2009.1488
Nordio, M. et al. Italian Dialysis and Transplantation Registry. Survival in patients treated by long-term dialysis compared with the general population. Am. J. Kidney Dis. 59, 819–828 (2012).
pubmed: 22361043 doi: 10.1053/j.ajkd.2011.12.023
Lukowsky, L. R., Kheifets, L., Arah, O. A., Nissenson, A. R. & Kalantar-Zadeh, K. Nutritional predictors of early mortality in incident hemodialysis patients. Int. Urol. Nephrol. 46, 129–140 (2014).
pubmed: 23703546 doi: 10.1007/s11255-013-0459-2
Barreto, D. V. et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 77, 550–556 (2010).
pubmed: 20016471 doi: 10.1038/ki.2009.503
Liabeuf, S., Cheddani, L. & Massy, Z. A. Uremic toxins and clinical outcomes: the impact of kidney transplantation. Toxins 10, E229 (2018).
pubmed: 29874852 doi: 10.3390/toxins10060229
Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).
pubmed: 16497592 doi: 10.1016/j.cell.2006.02.017
Vaziri, N. D. et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83, 308–315 (2013).
pubmed: 22992469 doi: 10.1038/ki.2012.345
Hung, S. C., Kuo, K. L., Wu, C. C. & Tarng, D. C. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J. Am. Heart Assoc. 6, e005022 (2017).
pubmed: 28174171 pmcid: 5523780 doi: 10.1161/JAHA.116.005022
Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).
pubmed: 27122046 pmcid: 4848870 doi: 10.1186/s13073-016-0307-y
Peled, J. U. et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 382, 822–834 (2020).
pubmed: 32101664 pmcid: 7534690 doi: 10.1056/NEJMoa1900623
Leitao Filho, F. S. et al. Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations. Am. J. Respir. Crit. Care. Med. 199, 1205–1213 (2019).
pubmed: 30376356 doi: 10.1164/rccm.201806-1135OC
Lin, T. Y. & Hung, S. C. Association of subjective global assessment of nutritional status with gut microbiota in hemodialysis patients: a case–control study. Nephrol. Dial. Transplant. gfaa019, https://doi.org/10.1093/ndt/gfaa019 (2020).
Lin, T. Y., Wu, P. H., Lin, Y. T. & Hung, S. C. Characterization of gut microbiota composition in hemodialysis patients with normal weight obesity. J. Clin. Endocrinol. Metab. 105, dgaa166 (2020).
pubmed: 32296838 doi: 10.1210/clinem/dgaa166
Ticinesi, A. et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: Is there a gut-muscle axis? Nutrients 9, E1303 (2017).
pubmed: 29189738 doi: 10.3390/nu9121303
Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1–8 (2009).
pubmed: 19222573 doi: 10.1111/j.1574-6968.2009.01514.x
Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16, 1024–1033 (2014).
pubmed: 24798552 pmcid: 4143175 doi: 10.1111/cmi.12308
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
pubmed: 19043404 doi: 10.1038/nature07540
Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).
pubmed: 16188921 pmcid: 1856500 doi: 10.1136/gut.2005.073817
Sun, S. et al. Gut microbiota composition and blood pressure. Hypertension 73, 998–1006 (2019).
pubmed: 30905192 doi: 10.1161/HYPERTENSIONAHA.118.12109
Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
pubmed: 23023125 doi: 10.1038/nature11450
Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 12918 (2019).
pubmed: 31501492 pmcid: 6733864 doi: 10.1038/s41598-019-49452-y
Pallister, T. et al. Hippurate as a metabolomics marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Sci. Rep. 7, 13670 (2017).
pubmed: 29057986 pmcid: 5651863 doi: 10.1038/s41598-017-13722-4
Wilmanski, T. et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotechnol. 37, 1217–1228 (2019).
pubmed: 31477923 doi: 10.1038/s41587-019-0233-9
Menni, C. et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur. Heart J. 39, 2390–2397 (2018).
pubmed: 29750272 pmcid: 6030944 doi: 10.1093/eurheartj/ehy226
Trøseid, M., Andersen, G. Ø., Broch, K. & Hov, J. R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine 52, 102649 (2020).
pubmed: 32062353 pmcid: 7016372 doi: 10.1016/j.ebiom.2020.102649
Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).
pubmed: 22718773 pmcid: 3657523 doi: 10.1093/cid/cis580
Kato, K. et al. Longitudinal analysis of the intestinal microbiota in liver transplantation. Transplant. Direct 3, e144 (2017).
pubmed: 28405600 pmcid: 5381737 doi: 10.1097/TXD.0000000000000661
Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).
Ott, S. J. & Schreiber, S. Reduced microbial diversity in inflammatory bowel diseases. Gut 55, 1207 (2006).
pubmed: 16849351 pmcid: 1856277
Annavajhala, M. K. et al. Oral and gut microbial diversity and immune regulation in patients with HIV on antiretroviral therapy. mSphere 5, e00798–19 (2020).
pubmed: 32024712 pmcid: 7002309 doi: 10.1128/mSphere.00798-19
Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).
pubmed: 24388214 doi: 10.1016/B978-0-12-800100-4.00003-9
Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
pubmed: 24679531 pmcid: 4056765 doi: 10.1016/j.cell.2014.03.011
Rashid, M. U. et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin. Infect. Dis. 60, S77–S84 (2015).
pubmed: 25922405 doi: 10.1093/cid/civ137
Marcelli, D. et al. Body composition and survival in dialysis patients: results from an international cohort study. Clin. J. Am. Soc. Nephrol. 10, 1192–1200 (2015).
pubmed: 25901091 pmcid: 4491292 doi: 10.2215/CJN.08550814
Li, P. et al. Plasma endothelin-1 and risk of death and hospitalization in patients undergoing maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 15, 784–793 (2020).
pubmed: 32381583 doi: 10.2215/CJN.11130919 pmcid: 7274287
Hung, S. C. et al. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int. 85, 703–709 (2014).
pubmed: 24025647 doi: 10.1038/ki.2013.336
Chamney, P. W. et al. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 85, 80–89 (2007).
pubmed: 17209181 doi: 10.1093/ajcn/85.1.80
Huang, Y. C., Lee, M. S., Pan, W. H. & Wahlqvist, M. L. Validation of a simplified food frequency questionnaire as used in the Nutrition and Health Survey in Taiwan (NAHSIT) for the elderly. Asia Pac. J. Clin. Nutr. 20, 134–140 (2011).
pubmed: 21393121
de Mutsert, R. et al. Netherlands Cooperative Study on the Adequacy of Dialysis-2 Study Group. Subjective global assessment of nutritional status is strongly associated with mortality in chronic dialysis patients. Am. J. Clin. Nutr. 89, 787–793 (2009).
pubmed: 19144733 doi: 10.3945/ajcn.2008.26970
Johansen, K. L. et al. Validation of questionnaires to estimate physical activity and functioning in end-stage renal disease. Kidney Int. 59, 1121–1127 (2001).
pubmed: 11231369 doi: 10.1046/j.1523-1755.2001.0590031121.x
Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
pubmed: 21472016 pmcid: 3176514 doi: 10.1038/ismej.2011.41
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
pubmed: 19801464 pmcid: 2786419 doi: 10.1128/AEM.01541-09
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
pubmed: 23955772 doi: 10.1038/nmeth.2604
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283 doi: 10.1093/nar/gks1219
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
doi: 10.18637/jss.v022.i04
McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014).
pubmed: 24699258 pmcid: 3974642 doi: 10.1371/journal.pcbi.1003531
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
pubmed: 21702898 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
pubmed: 23985870 doi: 10.1038/nature12506
Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16 (2018).
pubmed: 29255284 doi: 10.1038/s41564-017-0072-8

Auteurs

Ting-Yun Lin (TY)

Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan.

Ping-Hsun Wu (PH)

Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.

Yi-Ting Lin (YT)

Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.

Szu-Chun Hung (SC)

Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan. szuchun.hung@gmail.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH