Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix.
Agar-agar
Enterobacter aerogenes KCTC2190
Immobilization
Reusability
Thermodynamics
β-galactosidase
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
received:
23
12
2020
accepted:
26
02
2021
pubmed:
10
3
2021
medline:
2
9
2021
entrez:
9
3
2021
Statut:
ppublish
Résumé
In the present study, Enterobacter aerogenes KCTC2190 was isolated from soil around a cattle shed area, which was capable of producing intracellular β-galactosidase. Partially purified β-galactosidase was immobilized by entrapment method in agar-agar gel matrix. Agar-agar entrapped beads were prepared by dropping the enzyme-agar solution to ice-cooled toluene-chloroform ((3:1 (v/v)). 45.88±0.11% activity of partially purified β-galactosidase was retained after immobilization (bead shape). Maximum immobilization yield was observed in the presence of 2.5% agar-agar concentration. After immobilization, optimum temperature required for the enzyme-substrate reaction was shifted from 50 to 60 °C and the optimum reaction time was shifted from 15 to 25 min. The optimum pH for both free and immobilized β-galactosidase was pH 7. Free enzyme showed lower activation energy in comparison with the immobilized one. For free as well as immobilized β-galactosidase thermal deactivation, rate constant (k
Identifiants
pubmed: 33686627
doi: 10.1007/s12010-021-03534-8
pii: 10.1007/s12010-021-03534-8
doi:
Substances chimiques
Bacterial Proteins
0
Enzymes, Immobilized
0
Agar
9002-18-0
beta-Galactosidase
EC 3.2.1.23
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2198-2224Références
Jin, L., Li, Y., Ren, X. H., & Lee, J. H. (2015). Immobilization of lactase onto various polymer nanofibers for enzyme stabilization and recycling. Journal of Microbiology and Biotechnology, 25(8), 1291–1298. https://doi.org/10.4014/jmb.1501.01012 .
doi: 10.4014/jmb.1501.01012
pubmed: 25907067
Martarello, R. D. A., Cunha, L., Cardoso, S. L., de Freitas, M. M., Silveira, D., Fonseca-Bazzo, Y. M., Homem-de-Mello, M., Filho, E. X. F., & Magalhães, P. O. (2019). Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express, 9(1), 81. https://doi.org/10.1186/s13568-019-0805-6 .
doi: 10.1186/s13568-019-0805-6
pubmed: 31183613
pmcid: 6557963
Xu, X., Fan, X., Fan, C., Qin, X., Liu, B., Nie, C., Sun, N., Yao, Q., Zhang, Y., & Zhang, W. (2019). Production optimization of an active-galactosidase of Bifidobacterium animalis in heterologous expression systems. BioMed Research International, 2019, 1–10. https://doi.org/10.1155/2019/8010635 .
doi: 10.1155/2019/8010635
Oluwaniyi, T. T., Omafuvbe, B. O., & Agboola, F. K. (2016) Purification and characterization of β-galactosidase from Kluveromyces lactis isolated from a yoghurt waste site. Research & Reviews: Journal of Microbiology and Biotechnology, 5, 52–57.
Venkateswarulu, T. C., Peele, K. A., Krupanidhi, S., Reddy, K. P. N., Indira, M., Rao, A. R., Kumar, R. B., & Prabhakar, K. V. (2020). Biochemical and molecular characterization of lactase producing bacterium isolated from dairy effluent. Journal of King Saud University-Science, 32(2), 1581–1585. https://doi.org/10.1016/j.jksus.2019.12.014 .
doi: 10.1016/j.jksus.2019.12.014
Niu, D., Tian, X., Mchunu, N. P., Jia, C., Singh, S., Liu, X., Prior, B. A., & Lu, F. (2017). Biochemical characterization of three Aspergillus niger β-galactosidases. Electronic Journal of Biotechnology, 27, 37–43. https://doi.org/10.1016/j.ejbt.2017.03.001 .
doi: 10.1016/j.ejbt.2017.03.001
Gomaa, E. Z. (2018). β-galactosidase from Lactobacillus delbrueckii and Lactobacillus reuteri: optimization, characterization and formation of galactooligosaccharides. Indian Journal of Biotechnology, 17, 407–415.
Venkateswarulu, T. C., Vidya Prabhakar, K., & Bharath Kumar, R. (2017). Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotechnol, 7, 1–9. https://doi.org/10.1007/s13205-017-0805-7 .
doi: 10.1007/s13205-017-0805-7
Alikkunju, A. P., Sainjan, N., Silvester, R., Joseph, A., Rahiman, M., Antony, A. C., Kumaran, R. C., & Hatha, M. (2016). Screening and characterization of cold-active β -galactosidase producing psychotrophic Enterobacter ludwigii from the sediments of Arctic Fjord. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-016-2111-y .
Ghatak, A., Guha, A. K., & Ray, L. (2013). Immobilization of β -galactosidase from Enterobacter cloacae : characterization and its use in the continuous production of low lactose milk. Indian Journal of Biotechnology, 12, 523–530.
Maheswari, N. U., & Priyadarshini, S. I. (2014). Effect of different immobilization techniques on α- amylase. Journal of Chemical and Pharmaceutical Research, 6(5), 768–774.
Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3. Biotech, 3(1), 1–9. https://doi.org/10.1007/s13205-012-0071-7 .
doi: 10.1007/s13205-012-0071-7
Mahajan, R., Gupta, V. K., & Sharma, J. (2010). Comparison and suitability of gel matrix for entrapping higher content of enzymes for commercial applications. Indian Journal of Pharmaceutical Sciences, 72(2), 223. https://doi.org/10.4103/0250-474X.65010 .
doi: 10.4103/0250-474X.65010
pubmed: 20838527
pmcid: 2929782
Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192 .
doi: 10.1080/13102818.2015.1008192
Pervez, S., Nawaz, M. A., Jamal, M., Jan, T., Maqbool, F., Shah, I., Aman, A., & Qader, S. A. U. (2019). Improvement of catalytic properties of starch hydrolyzing fungal amyloglucosidase: utilization of agar-agar as an organic matrix for immobilization. Carbohydrate Research, 486, 107860. https://doi.org/10.1016/j.carres.2019.107860 .
doi: 10.1016/j.carres.2019.107860
pubmed: 31683070
Sattar, H., Aman, A., & Qader, S. A. U. (2018). Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. International Journal of Biological Macromolecules, 111, 917–922. https://doi.org/10.1016/j.ijbiomac.2018.01.105 .
doi: 10.1016/j.ijbiomac.2018.01.105
pubmed: 29415415
Bustamante-Vargas, C. E., Junges, A., Venquiaruto, L. D., Oro, C. E. D., Julio-Orozco, D. J., Zabot, G. L., Tres, M. V., Paroul, N., Backes, G. T., & Dallago, R. M. (2019). Thermal inactivation kinetics and thermodynamic properties of immobilised Aspergillus niger pectinase in rigid polyurethane foam. International Food Research Journal, 26(5), 1535–1545.
Nguyen, T. H., Splechtna, B., Steinböck, M., Kneifel, W., Lettner, H. P., Kulbe, K. D., & Haltrich, D. (2006). Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 54(14), 4989–4998. https://doi.org/10.1021/jf053126u .
doi: 10.1021/jf053126u
pubmed: 16819907
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randal, R. L. (1951). Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.
doi: 10.1016/S0021-9258(19)52451-6
Holt, J. G., Krieg, N. R., Peter, H. A. S., & Bergy, D. H. (1994). Bergy’s manual of determinative Bacteriology (9th ed.). Philadelphia: Lippincott Williams & Wilkins.
Lee, J. Y., Kwak, M. S., Roh, J. B., Kim, K., & Sung, M. H. (2017). Microbial β-galactosidase of Pediococcus pentosaceus ID-7: Isolation, cloning, and molecular characterization. Journal of Microbiology and Biotechnology, 27(3), 598–609. https://doi.org/10.4014/jmb.1611.11015 .
doi: 10.4014/jmb.1611.11015
pubmed: 27994214
Sumathy, R., Vijayalakshmi, M., & Deecaraman, M. (2012). Study on β-galactosidase of Lactobacillus SP from milk products and its applications. International Journal of Applied Biology and Pharmaceutical Technology, 3(4), 138–148.
Konozy, E. H. E. (2016). Isolation, purification and characterization of a thermostable β-galactosidase isoform from Erythrina indica seeds. Global Advanced Research Journal of Agricultural Science, 5(6), 175–182.
Sen, S., Ray, L., & Chattopadhyay, P. (2012). Production, purification, immobilization, and characterization of a thermostable β-galactosidase from Aspergillus alliaceus. Applied Biochemistry and Biotechnology, 167(7), 1938–1953. https://doi.org/10.1007/s12010-012-9732-6 .
doi: 10.1007/s12010-012-9732-6
pubmed: 22639361
Rehman, H. U., Aman, A., Zoha, R. R., & Qader, S. A. U. (2014). Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydrate Polymers, 102, 622–626. https://doi.org/10.1016/j.carbpol.2013.11.073 .
doi: 10.1016/j.carbpol.2013.11.073
pubmed: 24507327
Wahab, W. A. A., Karam, E. A., Hassan, M. E., Kansoh, A. L., Esawy, M. A., & Awad, G. E. (2018). Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization. International Journal of Biological Macromolecules, 113, 159–170. https://doi.org/10.1016/j.ijbiomac.2018.02.086 .
doi: 10.1016/j.ijbiomac.2018.02.086
pubmed: 29458101
Pal, A., Lobo, M., & Khanum, F. (2013). Extraction , purification and thermodynamic characterization of almond ( Amygdalus communis ) b -galactosidase for the preparation of delactosed milk. Food Technology and Biotechnology, 51(1), 53–61.
Maity, M., Sanyal, S., Bhowal, J., & Bhattacharyya, D. K. (2013). Studies on isolation and characterization of lactase produced from soil bacteria. Research Journal of Recent Sciences, 2(8), 92–94.
Ghatak, A., Guha, A. K., & Ray, L. (2010). β - D -galactosidase from Enterobacter cloacae : production and some physicochemical properties. Applied Biochemistry and Biotechnology, 162(6), 1678–1688. https://doi.org/10.1007/s12010-010-8949-5 .
doi: 10.1007/s12010-010-8949-5
pubmed: 20358408
Mozumder, N. H. M. R., Akhtaruzzaman, M., Bakr, M. A., & Zohra, F. T. (2012). Study on isolation and partial purification of lactase (β-galactosidase) enzyme from Lactobacillus bacteria isolated from yogurt. Journal of Scientific Research, 4(1), 239–239.
doi: 10.3329/jsr.v4i1.8478
Kalita, T., Sangma, S. D., Bez, G., & Ambasht, P. K. (2020). Immobilization of acid phosphatase in agar-agar and gelatin: comparative characterization. Journal of Scientific Research, 64(2), 192–200. https://doi.org/10.37398/JSR.2020.640227 .
doi: 10.37398/JSR.2020.640227
Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 81(2), 252–259. https://doi.org/10.1016/j.carbpol.2010.02.027 .
doi: 10.1016/j.carbpol.2010.02.027
Selvarajan, E., & Mohanasrinivasan, V. (2015). Kinetic studies on exploring lactose hydrolysis potential of β galactosidase extracted from Lactobacillus plantarum HF571129. Journal of Food Science and Technology, 52(10), 6206–6217. https://doi.org/10.1007/s13197-015-1729-z .
doi: 10.1007/s13197-015-1729-z
pubmed: 26396367
pmcid: 4573140
Ahmed, S. A., Saleh, S. A., Abdel-Hameed, S. A., & Fayad, A. M. (2019). Catalytic, kinetic and thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. Heliyon, 5(5), e01674. https://doi.org/10.1016/j.heliyon.2019.e01674 .
doi: 10.1016/j.heliyon.2019.e01674
pubmed: 31193050
pmcid: 6514538
Pal, A., & Khanum, F. (2012). Covalent immobilization of xylanase on the surface of alginate-glutaraldehyde beads decreases the ‘catalytic efficiency’but provides ‘low temperature stabilization’effect. Journal of Biochemical Technology, 3(5), 409–413.
Pradhan, S., Gothwal, R. K., Mohan, M. K., & Ghosh, P. Evaluating bacterial cell immobilization of Brevibacillus formosus BISR-1 and Paenibacillus sp. BISR-047 with different matrices. International Journal of Engineering Research & Technology, 8(6), 1358–1363.