Helicobacter pylori biofilm interference by N-acyl homoserine lactonases: in vitro and in silico approaches.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 20 06 2024
accepted: 11 10 2024
medline: 30 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

Qurom quenching enzyme have an impact on treatment efficacy and prevent the recurrence of Helicobacter pylori biofilm-related infections, although it has not been thoroughly investigated in vitro and in silico. The current study aims to characterize the N-acyl homoserine lactonase, the quorum quenching AiiA protein of Bacillus licheniformis against H. pylori biofilm. In this study, AiiA protein were screened for their anti-biofilm activity, was found to effectively control biofilm formation of H. pylori with concentrations ranging from 2 to 10 µg/mL. According to CLSM and COMSTAT analysis, the untreated substratum had the robust biofilm biomass of 25-18 µM and biovolume of 3-4 mm In this study, the H. pylori biofilm architecture, exopolysaccharide and urease were significantly controlled by our purified N-acyl homoserine lactonase from B. licheniformis. Furthermore, the molecular docking showed the significant interaction between AiiA and key biofilm forming and virulence proteins proved an excellent antibiofilm activity controlling the infections of H. pylori human pathogen.

Sections du résumé

BACKGROUND BACKGROUND
Qurom quenching enzyme have an impact on treatment efficacy and prevent the recurrence of Helicobacter pylori biofilm-related infections, although it has not been thoroughly investigated in vitro and in silico. The current study aims to characterize the N-acyl homoserine lactonase, the quorum quenching AiiA protein of Bacillus licheniformis against H. pylori biofilm.
METHODS AND RESULTS RESULTS
In this study, AiiA protein were screened for their anti-biofilm activity, was found to effectively control biofilm formation of H. pylori with concentrations ranging from 2 to 10 µg/mL. According to CLSM and COMSTAT analysis, the untreated substratum had the robust biofilm biomass of 25-18 µM and biovolume of 3-4 mm
CONCLUSION CONCLUSIONS
In this study, the H. pylori biofilm architecture, exopolysaccharide and urease were significantly controlled by our purified N-acyl homoserine lactonase from B. licheniformis. Furthermore, the molecular docking showed the significant interaction between AiiA and key biofilm forming and virulence proteins proved an excellent antibiofilm activity controlling the infections of H. pylori human pathogen.

Identifiants

pubmed: 39476276
doi: 10.1007/s11033-024-10013-w
pii: 10.1007/s11033-024-10013-w
doi:

Substances chimiques

N-acyl homoserine lactonase EC 3.1.1.-
Bacterial Proteins 0
Carboxylic Ester Hydrolases EC 3.1.1.-
Virulence Factors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1106

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Elshenawi Y, Hu S, Hathroubi S (2023) Biofilm of Helicobacter pylori: life cycle, features, and Treatment options. Antibiotics 12 8, Art. 8, Aug. https://doi.org/10.3390/antibiotics12081260
Ansari S, Yamaoka Y (Nov. 2019) Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins 11(11):677. https://doi.org/10.3390/toxins11110677
Baj J et al (Dec. 2020) Helicobacter pylori Virulence Factors-Mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 10(1):27. https://doi.org/10.3390/cells10010027
Malfertheiner P et al (Apr. 2023) Helicobacter pylori infection. Nat Rev Dis Primer 9(1):1–24. https://doi.org/10.1038/s41572-023-00431-8
Ayaş M, Oktem-Okullu S, Özcan O, Kocagöz T, Gürol Y (Apr. 2024) Exploring the Molecular Mechanisms of Macrolide Resistance in Laboratory Mutant Helicobacter pylori. Antibiotics 13(5):396. https://doi.org/10.3390/antibiotics13050396
Esfandiary MA, Khosravi AR, Asadi S, Nikaein D, Hassan J, Sharifzadeh A (May 2024) Antimicrobial and anti-biofilm properties of oleuropein against Escherichia coli and fluconazole-resistant isolates of Candida albicans and Candida Glabrata. BMC Microbiol 24(1):154. https://doi.org/10.1186/s12866-024-03305-5
Gopalakrishnan V, Masanam E, Ramkumar VS, Baskaraligam V, Selvaraj G (2020) Influence of N-acylhomoserine lactonase silver nanoparticles on the quorum sensing system of Helicobacter pylori: a potential strategy to combat biofilm formation. J Basic Microbiol 60(3):207–215. https://doi.org/10.1002/jobm.201900537
doi: 10.1002/jobm.201900537 pubmed: 31960983
Noor AO et al (May 2022) Biodiversity of N-acyl homoserine lactonase (aiiA) gene from Bacillus subtilis. Microb Pathog 166:105543. https://doi.org/10.1016/j.micpath.2022.105543
Wang W et al (2023) Jul., N-acyl homoserine lactonase attenuates the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers, Anim. Nutr., vol. 14, pp. 334–342, https://doi.org/10.1016/j.aninu.2023.04.010
Paluch E, Rewak-Soroczyńska J, Jędrusik I, Mazurkiewicz E, Jermakow K (2020) Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 104(5):1871–1881. https://doi.org/10.1007/s00253-020-10349-w
doi: 10.1007/s00253-020-10349-w pubmed: 31927762
Sikdar R, Beauclaire MV, Lima BP, Herzberg MC, Elias MH (2024) N-acyl homoserine lactone signaling modulates bacterial community associated with human dental plaque, bioRxiv, p. 2024.03.15.585217, Mar. https://doi.org/10.1101/2024.03.15.585217
Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and Analyzing Static Biofilms, Curr. Protoc. Microbiol., vol. 0 1, p. Unit-1B.1, Jul. https://doi.org/10.1002/9780471729259.mc01b01s00
Walker JN, Horswill AR (Mar. 2012) A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma. Front Cell Infect Microbiol 2:39. https://doi.org/10.3389/fcimb.2012.00039
Yan Y, Tao H, He J, Huang S-Y (May 2020) The HDOCK server for integrated protein–protein docking. Nat Protoc 15(5):1829–1852. https://doi.org/10.1038/s41596-020-0312-x
Goncalves J, Govind R (2009) Rapid evaluation of biofilm attachment promoters and biofilm growth orientation using a mini-impedimetric device, Sens. Actuators B-Chem. - Sens. ACTUATOR B-CHEM, vol. 143, pp. 341–348, Dec. https://doi.org/10.1016/j.snb.2009.07.036
Yan Y, Zhang D, Zhou P, Li B, Huang S-Y (Jul. 2017) HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45:W365–W373. no. W110.1093/nar/gkx407
Rader BA, Wreden C, Hicks KG, Sweeney EG, Ottemann KM, Guillemin K (2011) Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology 157(9):2445–2455. https://doi.org/10.1099/mic.0.049353-0
doi: 10.1099/mic.0.049353-0 pubmed: 21602215
Forsyth MH, Cover TL (2000) Intercellular communication in Helicobacter pylori: luxS is essential for the production of an extracellular signaling molecule. Infect Immun 68(6):3193–3199. https://doi.org/10.1128/IAI.68.6.3193-3199.2000
doi: 10.1128/IAI.68.6.3193-3199.2000 pubmed: 10816463
Gopalakrishnan V et al (2024) Biodiversity of N-acyl homoserine lactonase (aiiA) gene from Bacillus subtilis. Microb Pathog 10(1):1–15. https://doi.org/10.1016/j.micpath.2022.105543
doi: 10.1016/j.micpath.2022.105543
Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora, Proc. Natl. Acad. Sci. U. S. A., vol. 97, no. 7, pp. 3526–3531, https://doi.org/10.1073/pnas.97.7.3526
Peng M et al (2021) Attenuation of aeromonas hydrophila infection in carassius auratus by ytnp, a n-acyl homoserine lactonase from bacillus licheniformis t-1. Antibiotics 10(6):1–15. https://doi.org/10.3390/antibiotics10060631
doi: 10.3390/antibiotics10060631
Wang W et al (2023) N-acyl homoserine lactonase attenuates the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers. Anim Nutr 14:334–342. https://doi.org/10.1016/j.aninu.2023.04.010
doi: 10.1016/j.aninu.2023.04.010 pubmed: 37635927
Vinoj G, Pati R, Sonawane A, Vaseeharan B (2015) In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against proteus species. Antimicrob Agents Chemother 59(2):763–771. https://doi.org/10.1128/AAC.03047-14
doi: 10.1128/AAC.03047-14 pubmed: 25403677
Liang J, Chen S (2024) MzmL, a novel marine derived N -acyl homoserine lactonase from Mesoflavibacter zeaxanthinifaciens that attenuates Pectobacterium carotovorum subsp. carotovorum virulence. No May. https://doi.org/10.3389/fmicb.2024.1353711
doi: 10.3389/fmicb.2024.1353711
Krzyżek P, Migdał P, Grande R, Gościniak G (2022) Biofilm Formation of Helicobacter pylori in Both Static and Microfluidic Conditions Is Associated With Resistance to Clarithromycin, Front. Cell. Infect. Microbiol., vol. 12, Mar. https://doi.org/10.3389/fcimb.2022.868905
Malfertheiner P et al (2023) Helicobacter pylori infection. Nat Rev Dis Primer 9(1). https://doi.org/10.1038/s41572-023-00431-8
Anandan K, Vittal RR (2019) Quorum quenching activity of AiiA lactonase KMMI17 from endophytic Bacillus thuringiensis KMCL07 on AHL- mediated pathogenic phenotype in Pseudomonas aeruginosa, Microb. Pathog., vol. 132, pp. 230–242, Jul. https://doi.org/10.1016/j.micpath.2019.05.015
Kim MH et al (2005) Dec., The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase, Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 49, pp. 17606–17611, https://doi.org/10.1073/pnas.0504996102
Skoog EC et al (Jan. 2017) BabA dependent binding of Helicobacter pylori to human gastric mucins cause aggregation that inhibits proliferation and is regulated via ArsS. Sci Rep 7(1):40656. https://doi.org/10.1038/srep40656
Doohan D, Rezkitha YAA, Waskito LA, Yamaoka Y, Miftahussurur M (Jul. 2021) Helicobacter pylori BabA–SabA Key roles in the adherence phase: the synergic mechanism for successful colonization and Disease Development. Toxins 13(7):485. https://doi.org/10.3390/toxins13070485
Yang K-Y et al (2021) Glycosyltransferase Jhp0106 (PseE) contributes to flagellin maturation in Helicobacter pylori. Helicobacter 26:e12787. no. 210.1111/hel.12787
doi: 10.1111/hel.12787 pubmed: 33586844
Oura H et al (Apr. 2015) Inhibition of Pseudomonas aeruginosa swarming motility by 1-Naphthol and other Bicyclic compounds Bearing Hydroxyl groups. Appl Environ Microbiol 81:2808. https://doi.org/10.1128/AEM.04220-14

Auteurs

Vinoj Gopalakrishnan (V)

MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), SBV Campus, Pillayarkuppam, Pondicherry, 607402, India. vinojg@mgmari.sbvu.ac.in.

Vaijayanthi Saravanan (V)

MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), SBV Campus, Pillayarkuppam, Pondicherry, 607402, India.

Maria Infant Majula Shifani Mahendran (MIMS)

MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), SBV Campus, Pillayarkuppam, Pondicherry, 607402, India.

Madhana Priya Nanda Kumar (MPN)

NyBerMan Bioinformatics Europe, Paddenstoelenlaan 8, 3451 PZ Utrecht, Netherlands.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol

Classifications MeSH