Triangulating evidence from longitudinal and Mendelian randomization studies of metabolomic biomarkers for type 2 diabetes.
Adult
Aged
Betaine
/ blood
Biomarkers
/ blood
Carnitine
/ blood
Case-Control Studies
Diabetes Mellitus, Type 2
/ blood
Early Diagnosis
Female
Genetic Predisposition to Disease
Glutamic Acid
/ blood
Humans
Leucine
/ blood
Lysine
/ blood
Male
Mannose
/ blood
Mendelian Randomization Analysis
Metabolome
/ genetics
Middle Aged
Valine
/ blood
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 03 2021
18 03 2021
Historique:
received:
25
11
2020
accepted:
03
03
2021
entrez:
19
3
2021
pubmed:
20
3
2021
medline:
21
10
2021
Statut:
epublish
Résumé
The number of people affected by Type 2 diabetes mellitus (T2DM) is close to half a billion and is on a sharp rise, representing a major and growing public health burden. Given its mild initial symptoms, T2DM is often diagnosed several years after its onset, leaving half of diabetic individuals undiagnosed. While several classical clinical and genetic biomarkers have been identified, improving early diagnosis by exploring other kinds of omics data remains crucial. In this study, we have combined longitudinal data from two population-based cohorts CoLaus and DESIR (comprising in total 493 incident cases vs. 1360 controls) to identify new or confirm previously implicated metabolomic biomarkers predicting T2DM incidence more than 5 years ahead of clinical diagnosis. Our longitudinal data have shown robust evidence for valine, leucine, carnitine and glutamic acid being predictive of future conversion to T2DM. We confirmed the causality of such association for leucine by 2-sample Mendelian randomisation (MR) based on independent data. Our MR approach further identified new metabolites potentially playing a causal role on T2D, including betaine, lysine and mannose. Interestingly, for valine and leucine a strong reverse causal effect was detected, indicating that the genetic predisposition to T2DM may trigger early changes of these metabolites, which appear well-before any clinical symptoms. In addition, our study revealed a reverse causal effect of metabolites such as glutamic acid and alanine. Collectively, these findings indicate that molecular traits linked to the genetic basis of T2DM may be particularly promising early biomarkers.
Identifiants
pubmed: 33737653
doi: 10.1038/s41598-021-85684-7
pii: 10.1038/s41598-021-85684-7
pmc: PMC7973501
doi:
Substances chimiques
Biomarkers
0
Glutamic Acid
3KX376GY7L
Betaine
3SCV180C9W
Leucine
GMW67QNF9C
Valine
HG18B9YRS7
Lysine
K3Z4F929H6
Mannose
PHA4727WTP
Carnitine
S7UI8SM58A
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6197Références
Tucker, L. A. Limited agreement between classifications of diabetes and prediabetes resulting from the OGTT, hemoglobin A1c, and fasting glucose tests in 7412 Us Adults. J. Clin. Med. 9(7), 2207 (2020).
pmcid: 7408667
doi: 10.3390/jcm9072207
Serdar, M. A. et al. An assessment of HbA1c in diabetes mellitus and pre-diabetes diagnosis: a multi-centered data mining study. Appl. Biochem. Biotechnol. 190(1), 44–56 (2020).
pubmed: 31301010
doi: 10.1007/s12010-019-03080-4
Kyi, M. et al. Early intervention for diabetes in medical and surgical inpatients decreases hyperglycemia and hospital-acquired infections: a cluster randomized trial. Diabetes Care 42(5), 832–840 (2019).
pubmed: 30923164
doi: 10.2337/dc18-2342
Yuan, S. & Larsson, S. C. An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study. Diabetologia 63(11), 2359–2371 (2020).
pubmed: 32895727
pmcid: 7527357
doi: 10.1007/s00125-020-05253-x
Yengo, L. et al. Impact of statistical models on the prediction of type 2 diabetes using non-targeted metabolomics profiling. Mol. Metab. 5(10), 918–925 (2016).
pubmed: 27689004
pmcid: 5034686
doi: 10.1016/j.molmet.2016.08.011
Fenske, W. et al. A copeptin-based approach in the diagnosis of diabetes insipidus. N. Engl. J. Med. 379(5), 428–439 (2018).
pubmed: 30067922
doi: 10.1056/NEJMoa1803760
Udler, M. S. et al. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr. Rev. 40(6), 1500–1520 (2019).
pubmed: 31322649
pmcid: 6760294
doi: 10.1210/er.2019-00088
Menni, C. et al. Biomarkers for Type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 62(12), 4270–4276 (2013).
pubmed: 23884885
pmcid: 3837024
doi: 10.2337/db13-0570
Wang-Sattler, R. et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 8, 615 (2012).
pubmed: 23010998
pmcid: 3472689
doi: 10.1038/msb.2012.43
Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2), 639–648 (2013).
pubmed: 23043162
pmcid: 3554384
doi: 10.2337/db12-0495
Padberg, I. et al. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS ONE 9(1), e85082 (2014).
pubmed: 24465478
pmcid: 3894948
doi: 10.1371/journal.pone.0085082
Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17(4), 448–453 (2011).
pubmed: 21423183
pmcid: 3126616
doi: 10.1038/nm.2307
Guasch-Ferre, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39(5), 833–846 (2016).
pubmed: 27208380
pmcid: 4839172
doi: 10.2337/dc15-2251
Strand, E. et al. Serum carnitine metabolites and incident type 2 diabetes mellitus in patients with suspected stable angina pectoris. J. Clin. Endocrinol. Metab. 103(3), 1033–1041 (2018).
pubmed: 29325058
doi: 10.1210/jc.2017-02139
Wigger, L. et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 18(9), 2269–2279 (2017).
pubmed: 28249170
doi: 10.1016/j.celrep.2017.02.019
Liu, J. et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics 13(9), 104 (2017).
pubmed: 28804275
pmcid: 5533833
doi: 10.1007/s11306-017-1239-2
Schmid, R. et al. Validation of 7 type 2 diabetes mellitus risk scores in a population-based cohort: CoLaus study. Arch. Intern. Med. 172(2), 188–189 (2012).
pubmed: 22271131
doi: 10.1001/archinte.172.2.188
Balkau, B. An epidemiologic survey from a network of French health examination centres. (DESIR: Epidemiologic data on the insulin resistance syndrome). Rev. D Epidemiol. Et De Sante Publ. 44(4), 373–375 (1996).
Bonnet, F. et al. Parental history of type 2 diabetes, TCF7L2 variant and lower insulin secretion are associated with incident hypertension. Data from the DESIR and RISC cohorts. Diabetologia 56(11), 2414–2423 (2013).
pubmed: 23942764
doi: 10.1007/s00125-013-3021-y
Vaxillaire, M. et al. Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia 57(8), 1601–1610 (2014).
pubmed: 24893864
doi: 10.1007/s00125-014-3277-x
Balkau, B. et al. Proposed criteria for the diagnosis of diabetes: evidence from a French epidemiological study (DESIR). Diabetes Metab. 23(5), 428–434 (1997).
pubmed: 9416436
Domingo-Almenara, X. et al. XCMS-MRM and METLIN-MRM: a cloud library and public resource for targeted analysis of small molecules. Nat. Methods 15(9), 681–684 (2018).
pubmed: 30150755
pmcid: 6629029
doi: 10.1038/s41592-018-0110-3
Bararpour, N., et al. Visualization and normalization of drift effect across batches in metabolome-wide association studies. bioRxiv (2020).
Smith, G. D. & Ebrahim, S. “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease?. Int. J. Epidemiol. 32(1), 1–22 (2003).
pubmed: 12689998
doi: 10.1093/ije/dyg070
Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46(6), 543–550 (2014).
pubmed: 24816252
pmcid: 4064254
doi: 10.1038/ng.2982
Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66(11), 2888–2902 (2017).
pubmed: 28566273
pmcid: 5652602
doi: 10.2337/db16-1253
Chen, X. & Yang, W. Branched-chain amino acids and the association with type 2 diabetes. J. Diabetes Investig. 6(4), 369–370 (2015).
pubmed: 26221513
pmcid: 4511294
doi: 10.1111/jdi.12345
Ferrannini, E. et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 62(5), 1730–1737 (2013).
pubmed: 23160532
pmcid: 3636608
doi: 10.2337/db12-0707
Palmer, N. D. et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the insulin resistance atherosclerosis study. J. Clin. Endocrinol. Metab. 100(3), E463–E468 (2015).
pubmed: 25423564
doi: 10.1210/jc.2014-2357
Wurtz, P. et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care 35(8), 1749–1756 (2012).
pubmed: 22563043
pmcid: 3402262
doi: 10.2337/dc11-1838
Ahola-Olli, A. V. et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia 62(12), 2298–2309 (2019).
pubmed: 31584131
pmcid: 6861432
doi: 10.1007/s00125-019-05001-w
Shi, L. et al. Plasma metabolites associated with type 2 diabetes in a Swedish population: a case-control study nested in a prospective cohort. Diabetologia 61(4), 849–861 (2018).
pubmed: 29349498
pmcid: 6448991
doi: 10.1007/s00125-017-4521-y
Melnik, B. C. Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J. Diabetes 3(3), 38–53 (2012).
pubmed: 22442749
pmcid: 3310004
doi: 10.4239/wjd.v3.i3.38
Krebs, M. et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51(3), 599–605 (2002).
pubmed: 11872656
doi: 10.2337/diabetes.51.3.599
Stancakova, A. et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes 61(7), 1895–1902 (2012).
pubmed: 22553379
pmcid: 3379649
doi: 10.2337/db11-1378
Cheng, S. et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125(18), 2222–2231 (2012).
pubmed: 22496159
pmcid: 3376658
doi: 10.1161/CIRCULATIONAHA.111.067827
Sun, Y. et al. Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. J. Clin. Endocrinol. Metab. 105(4), 1000–1008 (2020).
doi: 10.1210/clinem/dgz240
Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9(6), 565–566 (2009).
doi: 10.1016/j.cmet.2009.05.001
Cabrera, O. et al. Glutamate is a positive autocrine signal for glucagon release. Cell Metab. 7(6), 545–554 (2008).
pubmed: 18522835
pmcid: 4396785
doi: 10.1016/j.cmet.2008.03.004
Rhee, S. Y. et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics 14(7), 89 (2018).
pubmed: 29950956
pmcid: 6013531
doi: 10.1007/s11306-018-1383-3
Poorabbas, A. et al. Determination of free L-carnitine levels in type II diabetic women with and without complications. Eur. J. Clin. Nutr. 61(7), 892–895 (2007).
pubmed: 17311064
doi: 10.1038/sj.ejcn.1602594
Ringseis, R., Keller, J. & Eder, K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur. J. Nutr. 51(1), 1–18 (2012).
pubmed: 22134503
doi: 10.1007/s00394-011-0284-2
Joseph, J. J. & Golden, S. H. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci. 1391(1), 20–34 (2017).
pubmed: 27750377
doi: 10.1111/nyas.13217
Papandreou, C. et al. Plasma metabolites predict both insulin resistance and incident type 2 diabetes: a metabolomics approach within the prevencion con dieta mediterranea (PREDIMED) study. Am. J. Clin. Nutr. 109(3), 626–634 (2019).
pubmed: 30796776
pmcid: 7307433
doi: 10.1093/ajcn/nqy262
Bruehl, H., Wolf, O. T. & Convit, A. A blunted cortisol awakening response and hippocampal atrophy in type 2 diabetes mellitus. Psychoneuroendocrinology 34(6), 815–821 (2009).
pubmed: 19167831
pmcid: 2774914
doi: 10.1016/j.psyneuen.2008.12.010
Lederbogen, F. et al. Flattened circadian cortisol rhythm in type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 119(9), 573–575 (2011).
pubmed: 21472658
doi: 10.1055/s-0031-1275288
Hackett, R. A. et al. Diurnal cortisol patterns, future diabetes, and impaired glucose metabolism in the whitehall II cohort study. J. Clin. Endocrinol. Metab. 101(2), 619–625 (2016).
pubmed: 26647151
doi: 10.1210/jc.2015-2853
Di Dalmazi, G. et al. Glucocorticoids and type 2 diabetes: from physiology to pathology. J. Nutr. Metab. 2012, 525093 (2012).
pubmed: 23316348
pmcid: 3536319
doi: 10.1155/2012/525093
Clayton, R. N. et al. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J. Clin. Endocrinol. Metab. 96(3), 632–642 (2011).
pubmed: 21193542
doi: 10.1210/jc.2010-1942
Mair, P. et al. Infusion or repetitive bolus injection? A clinical study of midazolam/fentanyl and diazepam/fentanyl combination anesthesia in neurosurgical operations. Anasth. Intensivther. Notfallmed. 25(Suppl 1), 34–38 (1990).
pubmed: 2178489
doi: 10.1055/s-2007-1001104
Barrios, C. et al. Gut-microbiota-metabolite axis in early renal function decline. PLoS ONE 10(8), e0134311 (2015).
pubmed: 26241311
pmcid: 4524635
doi: 10.1371/journal.pone.0134311
Suhre, K. et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5(11), e13953 (2010).
pubmed: 21085649
pmcid: 2978704
doi: 10.1371/journal.pone.0013953
Svingen, G. F. T. et al. prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes. Clin. Chem. 62(5), 755–765 (2016).
pubmed: 26980210
doi: 10.1373/clinchem.2015.250761
Liu, Z. et al. Chronic exposure to proline causes aminoacidotoxicity and impaired beta-cell function: studies in vitro. Rev. Diabet. Stud. 13(1), 66–78 (2016).
pubmed: 27563695
pmcid: 5291183
doi: 10.1900/RDS.2016.13.66
Wurtz, P. et al. Metabolic signatures of adiposity in young adults: mendelian randomization analysis and effects of weight change. PLoS Med. 11(12), e1001765 (2014).
pubmed: 25490400
pmcid: 4260795
doi: 10.1371/journal.pmed.1001765
Andersson, C. et al. Low-density-lipoprotein cholesterol concentrations and risk of incident diabetes: epidemiological and genetic insights from the framingham heart study. Diabetologia 58(12), 2774–2780 (2015).
pubmed: 26409460
pmcid: 4631796
doi: 10.1007/s00125-015-3762-x
Fall, T. et al. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes 64(7), 2676–2684 (2015).
pubmed: 25948681
doi: 10.2337/db14-1710
White, J. et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol 1(6), 692–699 (2016).
pubmed: 27487401
pmcid: 5642865
doi: 10.1001/jamacardio.2016.1884
Liu, J. et al. A Mendelian randomization study of metabolite profiles, fasting glucose, and type 2 diabetes. Diabetes 66(11), 2915–2926 (2017).
pubmed: 28847883
doi: 10.2337/db17-0199
Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLoS Med. 13(11), e1002179 (2016).
pubmed: 27898682
pmcid: 5127513
doi: 10.1371/journal.pmed.1002179
Kowluru, R. A. et al. Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int. 38(5), 385–390 (2001).
pubmed: 11222918
doi: 10.1016/S0197-0186(00)00112-1
Li, Q. & Puro, D. G. Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Investig. Ophthalmol. Vis. Sci. 43(9), 3109–3116 (2002).
Razquin, C. et al. Lysine pathway metabolites and the risk of type 2 diabetes and cardiovascular disease in the PREDIMED study: results from two case-cohort studies. Cardiovasc. Diabetol. 18(1), 151 (2019).
pubmed: 31722714
pmcid: 6852717
doi: 10.1186/s12933-019-0958-2
Carter, T. C. et al. Validation of a metabolite panel for early diagnosis of type 2 diabetes. Metabolism 65(9), 1399–1408 (2016).
pubmed: 27506746
pmcid: 5518599
doi: 10.1016/j.metabol.2016.06.007
Sone, H. et al. Physiological changes in circulating mannose levels in normal, glucose-intolerant, and diabetic subjects. Metabolism 52(8), 1019–1027 (2003).
pubmed: 12898467
doi: 10.1016/S0026-0495(03)00153-7
Wood, F. C. Jr. & Cahill, G. F. Jr. Mannose utilization in man. J. Clin. Investig. 42, 1300–1312 (1963).
pubmed: 14057858
doi: 10.1172/JCI104814
pmcid: 289400