Successful extraction of insect DNA from recent copal inclusions: limits and perspectives.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 03 2021
Historique:
received: 06 06 2020
accepted: 01 03 2021
entrez: 26 3 2021
pubmed: 27 3 2021
medline: 21 10 2021
Statut: epublish

Résumé

Insects entombed in copal, the sub-fossilized resin precursor of amber, represent a potential source of genetic data for extinct and extant, but endangered or elusive, species. Despite several studies demonstrated that it is not possible to recover endogenous DNA from insect inclusions, the preservation of biomolecules in fossilized resins samples is still under debate. In this study, we tested the possibility of obtaining endogenous ancient DNA (aDNA) molecules from insects preserved in copal, applying experimental protocols specifically designed for aDNA recovery. We were able to extract endogenous DNA molecules from one of the two samples analyzed, and to identify the taxonomic status of the specimen. Even if the sample was found well protected from external contaminants, the recovered DNA was low concentrated and extremely degraded, compared to the sample age. We conclude that it is possible to obtain genomic data from resin-entombed organisms, although we discourage aDNA analysis because of the destructive method of extraction protocols and the non-reproducibility of the results.

Identifiants

pubmed: 33767248
doi: 10.1038/s41598-021-86058-9
pii: 10.1038/s41598-021-86058-9
pmc: PMC7994385
doi:

Substances chimiques

Amber 0
DNA, Ancient 0
Resins, Plant 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6851

Références

Higuchi, R. et al. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).
pubmed: 6504142 doi: 10.1038/312282a0
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A. 110, 15758–15763 (2013).
pubmed: 24019490 pmcid: 3785785 doi: 10.1073/pnas.1314445110
Hansen, H. B. et al. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS ONE 12, e0170940 (2017).
pubmed: 28129388 pmcid: 5271384 doi: 10.1371/journal.pone.0170940
Hagan, R. W. et al. Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. Am. J. Phys. Anthropol. 171, 275–284 (2020).
pubmed: 31785113 doi: 10.1002/ajpa.23978
Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. Sampling and extraction of ancient DNA from sediments. In Ancient DNA. Methods in Molecular Biology (eds Shapiro, B. et al.) 31–44 (Humana Press, 2019).
doi: 10.1007/978-1-4939-9176-1_5
Modi, A. et al. Combined methodologies for gaining much information from ancient dental calculus: testing experimental strategies for simultaneously analysing DNA and food residues. Archaeol. Anthropol. Sci. 12, 10 (2020).
doi: 10.1007/s12520-019-00983-5
Campos, P. F. & Gilbert, M. T. P. DNA extraction from keratin and chitin. In Ancient DNA. Methods in Molecular Biology (eds Shapiro, B. et al.) 57–63 (Humana Press, 2019).
doi: 10.1007/978-1-4939-9176-1_7
Adler, C. J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the neolithic and industrial revolutions. Nat. Genet. 45, 450-455e1 (2013).
pubmed: 23416520 pmcid: 3996550 doi: 10.1038/ng.2536
Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).
pubmed: 24562188 pmcid: 3969750 doi: 10.1038/ng.2906
Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).
pubmed: 28273061 doi: 10.1038/nature21674
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).
pubmed: 28450384 doi: 10.1126/science.aam9695
Teasdale, M. D. et al. The York Gospels: a 1000-year biological palimpsest. R. Soc. Open. Sci. 4, 170988 (2017).
pubmed: 29134095 pmcid: 5666278 doi: 10.1098/rsos.170988
Boast, A. et al. Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. Proc. Natl. Acad. Sci. U. S. A. 115, 1546–1551 (2018).
pubmed: 29440415 pmcid: 5816151 doi: 10.1073/pnas.1712337115
Zarrillo, S. et al. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat. Ecol. Evol. 2, 1879–1888 (2018).
pubmed: 30374172 doi: 10.1038/s41559-018-0697-x
Cano, R. J. et al. Amplification and sequencing of DNA from a 120–135 million-year-old weevil. Nature 363, 536–538 (1993).
pubmed: 8505978 doi: 10.1038/363536a0
DeSalle, R. et al. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257, 1933–1936 (1992).
pubmed: 1411508 doi: 10.1126/science.1411508
Sherratt, E. et al. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proc. Natl. Acad. Sci. U. S. A. 112, 9961–9966 (2015).
pubmed: 26216976 pmcid: 4538666 doi: 10.1073/pnas.1506516112
Sadowski, E. M. et al. Carnivorous leaves from Baltic amber. Proc. Natl. Acad. Sci. U. S. A. 112, 190–195 (2015).
pubmed: 25453067 doi: 10.1073/pnas.1414777111
Xing, L. et al. A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Curr. Biol. 26, 3352–3360 (2016).
pubmed: 27939315 doi: 10.1016/j.cub.2016.10.008
Rikkinen, J., Grimaldi, D. A. & Schmidt, A. R. Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis. Sci. Rep. 9, 19730 (2019).
pubmed: 31874965 pmcid: 6930221 doi: 10.1038/s41598-019-55622-9
Peñalver, E. et al. Thrips pollination of Mesozoic gymnosperms. Proc. Natl. Acad. Sci. U. S. A. 109, 8623–8628 (2012).
pubmed: 22615414 pmcid: 3365147 doi: 10.1073/pnas.1120499109
Cai, C. et al. Beetle pollination of cycads in the mesozoic. Curr. Biol. 28, 2806-2812.e1 (2018).
pubmed: 30122529 doi: 10.1016/j.cub.2018.06.036
Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl. Acad. Sci. U. S. A. 116, 24707–24711 (2019).
pubmed: 31712419 pmcid: 6900596 doi: 10.1073/pnas.1916186116
Labandeira, C. Amber. Paleont. Soc. Pap. 20, 163–215 (2014).
doi: 10.1017/S1089332600002850
Solórzano-Kraemer, M. M. et al. A revised definition for copal and its significance for palaeontological and Anthropocene biodiversity-loss studies. Sci. Rep. 10, 19904 (2020).
pubmed: 33199762 pmcid: 7669904 doi: 10.1038/s41598-020-76808-6
Clifford, D. J. & Hatcher, P. G. Structural transformations of polylabdanoid resinites during maturation. Org. Geochem. 23, 407–418 (1995).
doi: 10.1016/0146-6380(95)00022-7
Lambert, J. B., Santiago-Blay, J. A., Wu, Y. & Levy, A. J. Examination of amber and 490 related materials by NMR spectroscopy. Magn. Reson. Chem. 53, 2–8 (2015).
pubmed: 25176402 doi: 10.1002/mrc.4121
Stankiewicz, B. A. et al. Chemical preservation of plants and insects in natural resins. Proc. Biol. Sci. 265, 641–647 (1998).
pmcid: 1689027 doi: 10.1098/rspb.1998.0342
McCoy, V. E. et al. Ancient amino acids from fossil feathers in amber. Sci. Rep. 9, 6420 (2019).
pubmed: 31015542 pmcid: 6478714 doi: 10.1038/s41598-019-42938-9
Bada, J. L. et al. Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochim. Cosmochim. Acta. 58, 3131–3135 (1994).
pubmed: 11539553 doi: 10.1016/0016-7037(94)90185-6
Collins, M. J. et al. Is amino acid racemization a useful tool for screening for ancient DNA in bone?. Proc. R. Soc. B 276, 2971–2977 (2009).
pubmed: 19493899 doi: 10.1098/rspb.2009.0563 pmcid: 2817214
Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B 279, 4724–4733 (2012).
pubmed: 23055061 doi: 10.1098/rspb.2012.1745 pmcid: 3497090
Kistler, L. et al. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).
pubmed: 28486705 pmcid: 5499742 doi: 10.1093/nar/gkx361
DeSalle, R., Barcia, M. & Wray, C. PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia 49, 906–909 (1993).
pubmed: 8224109 doi: 10.1007/BF01952607
Poinar, G. O., Poinar, H. N. & Cano, R. J. DNA from amber inclusions. In Ancient DNA (eds Herrmann, B. & Hummel, S.) 92–103 (Springer, 1994).
doi: 10.1007/978-1-4612-4318-2_6
Austin, J. J. et al. Problems of reproducibility: does geologically ancient DNA survive in amber-preserved insects?. Proc. Roy. Soc. Lond. Ser. B 264, 467–474 (1997).
doi: 10.1098/rspb.1997.0067
Penney, D. et al. Absence of ancient DNA in sub-fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS ONE 8, e73150 (2013).
pubmed: 24039876 pmcid: 3770633 doi: 10.1371/journal.pone.0073150
Peris, D. et al. DNA from resin-embedded organisms: past, present and future. PLoS ONE 15, e0239521 (2020).
pubmed: 32986737 pmcid: 7521698 doi: 10.1371/journal.pone.0239521
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).
pubmed: 21179161 pmcid: 4306417 doi: 10.1038/nature09710
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
pubmed: 22936568 pmcid: 3617501 doi: 10.1126/science.1224344
Prüfer, K. et al. The complete genome sequence of a Neandertal from the Altai Mountains. Nature 505, 43–49 (2014).
pubmed: 24352235 doi: 10.1038/nature12886
Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).
pubmed: 28982794 pmcid: 6185897 doi: 10.1126/science.aao1887
Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).
pubmed: 26976447 doi: 10.1038/nature17405
Gilbert, M. T., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 20, 541–544 (2005).
pubmed: 16701432 doi: 10.1016/j.tree.2005.07.005
Willerslev, E. & Cooper, A. Ancient DNA. Proc. Biol. Sci. 272, 3–16 (2005).
pubmed: 15875564
Penney, D., Wadsworth, C. & Green, D. I. Extraction of inclusions from (sub)fossil resins, with description of a new species of stingless bee (Hymenoptera: Apidae: Meliponini), in quaternary Colombian copal. Paleontol. Contrib. 2013, 7:1–6 (2013).
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 6, pdb.prot5448 (2010).
doi: 10.1101/pdb.prot5448
Modi, A. et al. Complete mitochondrial sequences from Mesolithic Sardinia. Sci. Rep. 7, 42869 (2017).
pubmed: 28256601 pmcid: 5335606 doi: 10.1038/srep42869
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
pubmed: 27036623 pmcid: 4815194 doi: 10.1186/s13059-016-0918-z
Andrews, S. FastQC: a quality control tool for high throughput sequence data (2010). Available online at:  http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012).
pubmed: 22574660 pmcid: 3468387 doi: 10.1186/1471-2164-13-178
Li, H. et al. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Altschul, S. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Jackman, S. D. et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 27, 768–777 (2017).
pubmed: 28232478 pmcid: 5411771 doi: 10.1101/gr.214346.116
Huson, D. H. et al. MEGAN community edition: interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
pubmed: 27327495 pmcid: 4915700 doi: 10.1371/journal.pcbi.1004957
Hofreiter, M., Jaenicke, V., Serre, D., Haeseler, A. & Pääbo, S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 9, 4793–4799 (2011).
Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U. S. A. 104, 14616–14621 (2007).
pubmed: 17715061 pmcid: 1976210 doi: 10.1073/pnas.0704665104
Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012).
pubmed: 22479540 pmcid: 3316601 doi: 10.1371/journal.pone.0034131
Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
pubmed: 23613487 pmcid: 3694634 doi: 10.1093/bioinformatics/btt193
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
pubmed: 15034147 pmcid: 390337 doi: 10.1093/nar/gkh340
Kumar, S. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887 pmcid: 5967553 doi: 10.1093/molbev/msy096
Noonan, J. P. et al. Genomic sequencing of pleistocene cave bears. Science 309, 597–599 (2005).
pubmed: 15933159 doi: 10.1126/science.1113485
Green, R. E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).
pubmed: 17108958 doi: 10.1038/nature05336
Garcia-Garcera, M. et al. Fragmentation of contaminant and endogenous DNA in ancient samples determined by shotgun sequencing; prospects for human palaeogenomics. PLoS ONE 6, e24161 (2011).
pubmed: 21904610 pmcid: 3164143 doi: 10.1371/journal.pone.0024161
Llamas, B. et al. From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR 3, 1–14 (2017).
doi: 10.1080/20548923.2016.1258824
Wintertona, S. L., Brian, M. W. & Evert, I. S. Phylogeny and Bayesian divergence time estimations of small-headed Xies (Diptera: Acroceridae) using multiple molecular markers. Mol. Phylogenet. Evol. 43, 808–832 (2007).
doi: 10.1016/j.ympev.2006.08.015
Gillung, J. P. & Wintertona, S. L. Evolution of fossil and living spider flies based onmorphological and molecular data (Diptera, Acroceridae). Syst. Entomol. 44, 820–841 (2019).
doi: 10.1111/syen.12358
Klasson, L. et al. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc. Natl. Acad. Sci. U. S. A. 106, 5725–5730 (2009).
pubmed: 19307581 pmcid: 2659715 doi: 10.1073/pnas.0810753106
Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–327 (2013).
pubmed: 23435259 pmcid: 3612374 doi: 10.1038/nmeth.2375

Auteurs

Alessandra Modi (A)

Department of Biology, University of Florence, 50122, Florence, Italy. alessandra.modi@unifi.it.

Chiara Vergata (C)

Department of Biology, University of Florence, 50122, Florence, Italy.

Cristina Zilli (C)

Independent Researcher, Padova, Italy.

Chiara Vischioni (C)

Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy.

Stefania Vai (S)

Department of Biology, University of Florence, 50122, Florence, Italy.

Guidantonio Malagoli Tagliazucchi (GM)

UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.

Martina Lari (M)

Department of Biology, University of Florence, 50122, Florence, Italy.

David Caramelli (D)

Department of Biology, University of Florence, 50122, Florence, Italy.

Cristian Taccioli (C)

Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy. cristian.taccioli@unipd.it.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH