Successful extraction of insect DNA from recent copal inclusions: limits and perspectives.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 03 2021
25 03 2021
Historique:
received:
06
06
2020
accepted:
01
03
2021
entrez:
26
3
2021
pubmed:
27
3
2021
medline:
21
10
2021
Statut:
epublish
Résumé
Insects entombed in copal, the sub-fossilized resin precursor of amber, represent a potential source of genetic data for extinct and extant, but endangered or elusive, species. Despite several studies demonstrated that it is not possible to recover endogenous DNA from insect inclusions, the preservation of biomolecules in fossilized resins samples is still under debate. In this study, we tested the possibility of obtaining endogenous ancient DNA (aDNA) molecules from insects preserved in copal, applying experimental protocols specifically designed for aDNA recovery. We were able to extract endogenous DNA molecules from one of the two samples analyzed, and to identify the taxonomic status of the specimen. Even if the sample was found well protected from external contaminants, the recovered DNA was low concentrated and extremely degraded, compared to the sample age. We conclude that it is possible to obtain genomic data from resin-entombed organisms, although we discourage aDNA analysis because of the destructive method of extraction protocols and the non-reproducibility of the results.
Identifiants
pubmed: 33767248
doi: 10.1038/s41598-021-86058-9
pii: 10.1038/s41598-021-86058-9
pmc: PMC7994385
doi:
Substances chimiques
Amber
0
DNA, Ancient
0
Resins, Plant
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6851Références
Higuchi, R. et al. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).
pubmed: 6504142
doi: 10.1038/312282a0
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A. 110, 15758–15763 (2013).
pubmed: 24019490
pmcid: 3785785
doi: 10.1073/pnas.1314445110
Hansen, H. B. et al. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS ONE 12, e0170940 (2017).
pubmed: 28129388
pmcid: 5271384
doi: 10.1371/journal.pone.0170940
Hagan, R. W. et al. Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. Am. J. Phys. Anthropol. 171, 275–284 (2020).
pubmed: 31785113
doi: 10.1002/ajpa.23978
Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. Sampling and extraction of ancient DNA from sediments. In Ancient DNA. Methods in Molecular Biology (eds Shapiro, B. et al.) 31–44 (Humana Press, 2019).
doi: 10.1007/978-1-4939-9176-1_5
Modi, A. et al. Combined methodologies for gaining much information from ancient dental calculus: testing experimental strategies for simultaneously analysing DNA and food residues. Archaeol. Anthropol. Sci. 12, 10 (2020).
doi: 10.1007/s12520-019-00983-5
Campos, P. F. & Gilbert, M. T. P. DNA extraction from keratin and chitin. In Ancient DNA. Methods in Molecular Biology (eds Shapiro, B. et al.) 57–63 (Humana Press, 2019).
doi: 10.1007/978-1-4939-9176-1_7
Adler, C. J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the neolithic and industrial revolutions. Nat. Genet. 45, 450-455e1 (2013).
pubmed: 23416520
pmcid: 3996550
doi: 10.1038/ng.2536
Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).
pubmed: 24562188
pmcid: 3969750
doi: 10.1038/ng.2906
Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).
pubmed: 28273061
doi: 10.1038/nature21674
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).
pubmed: 28450384
doi: 10.1126/science.aam9695
Teasdale, M. D. et al. The York Gospels: a 1000-year biological palimpsest. R. Soc. Open. Sci. 4, 170988 (2017).
pubmed: 29134095
pmcid: 5666278
doi: 10.1098/rsos.170988
Boast, A. et al. Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. Proc. Natl. Acad. Sci. U. S. A. 115, 1546–1551 (2018).
pubmed: 29440415
pmcid: 5816151
doi: 10.1073/pnas.1712337115
Zarrillo, S. et al. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat. Ecol. Evol. 2, 1879–1888 (2018).
pubmed: 30374172
doi: 10.1038/s41559-018-0697-x
Cano, R. J. et al. Amplification and sequencing of DNA from a 120–135 million-year-old weevil. Nature 363, 536–538 (1993).
pubmed: 8505978
doi: 10.1038/363536a0
DeSalle, R. et al. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257, 1933–1936 (1992).
pubmed: 1411508
doi: 10.1126/science.1411508
Sherratt, E. et al. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proc. Natl. Acad. Sci. U. S. A. 112, 9961–9966 (2015).
pubmed: 26216976
pmcid: 4538666
doi: 10.1073/pnas.1506516112
Sadowski, E. M. et al. Carnivorous leaves from Baltic amber. Proc. Natl. Acad. Sci. U. S. A. 112, 190–195 (2015).
pubmed: 25453067
doi: 10.1073/pnas.1414777111
Xing, L. et al. A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Curr. Biol. 26, 3352–3360 (2016).
pubmed: 27939315
doi: 10.1016/j.cub.2016.10.008
Rikkinen, J., Grimaldi, D. A. & Schmidt, A. R. Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis. Sci. Rep. 9, 19730 (2019).
pubmed: 31874965
pmcid: 6930221
doi: 10.1038/s41598-019-55622-9
Peñalver, E. et al. Thrips pollination of Mesozoic gymnosperms. Proc. Natl. Acad. Sci. U. S. A. 109, 8623–8628 (2012).
pubmed: 22615414
pmcid: 3365147
doi: 10.1073/pnas.1120499109
Cai, C. et al. Beetle pollination of cycads in the mesozoic. Curr. Biol. 28, 2806-2812.e1 (2018).
pubmed: 30122529
doi: 10.1016/j.cub.2018.06.036
Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl. Acad. Sci. U. S. A. 116, 24707–24711 (2019).
pubmed: 31712419
pmcid: 6900596
doi: 10.1073/pnas.1916186116
Labandeira, C. Amber. Paleont. Soc. Pap. 20, 163–215 (2014).
doi: 10.1017/S1089332600002850
Solórzano-Kraemer, M. M. et al. A revised definition for copal and its significance for palaeontological and Anthropocene biodiversity-loss studies. Sci. Rep. 10, 19904 (2020).
pubmed: 33199762
pmcid: 7669904
doi: 10.1038/s41598-020-76808-6
Clifford, D. J. & Hatcher, P. G. Structural transformations of polylabdanoid resinites during maturation. Org. Geochem. 23, 407–418 (1995).
doi: 10.1016/0146-6380(95)00022-7
Lambert, J. B., Santiago-Blay, J. A., Wu, Y. & Levy, A. J. Examination of amber and 490 related materials by NMR spectroscopy. Magn. Reson. Chem. 53, 2–8 (2015).
pubmed: 25176402
doi: 10.1002/mrc.4121
Stankiewicz, B. A. et al. Chemical preservation of plants and insects in natural resins. Proc. Biol. Sci. 265, 641–647 (1998).
pmcid: 1689027
doi: 10.1098/rspb.1998.0342
McCoy, V. E. et al. Ancient amino acids from fossil feathers in amber. Sci. Rep. 9, 6420 (2019).
pubmed: 31015542
pmcid: 6478714
doi: 10.1038/s41598-019-42938-9
Bada, J. L. et al. Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochim. Cosmochim. Acta. 58, 3131–3135 (1994).
pubmed: 11539553
doi: 10.1016/0016-7037(94)90185-6
Collins, M. J. et al. Is amino acid racemization a useful tool for screening for ancient DNA in bone?. Proc. R. Soc. B 276, 2971–2977 (2009).
pubmed: 19493899
doi: 10.1098/rspb.2009.0563
pmcid: 2817214
Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B 279, 4724–4733 (2012).
pubmed: 23055061
doi: 10.1098/rspb.2012.1745
pmcid: 3497090
Kistler, L. et al. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).
pubmed: 28486705
pmcid: 5499742
doi: 10.1093/nar/gkx361
DeSalle, R., Barcia, M. & Wray, C. PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia 49, 906–909 (1993).
pubmed: 8224109
doi: 10.1007/BF01952607
Poinar, G. O., Poinar, H. N. & Cano, R. J. DNA from amber inclusions. In Ancient DNA (eds Herrmann, B. & Hummel, S.) 92–103 (Springer, 1994).
doi: 10.1007/978-1-4612-4318-2_6
Austin, J. J. et al. Problems of reproducibility: does geologically ancient DNA survive in amber-preserved insects?. Proc. Roy. Soc. Lond. Ser. B 264, 467–474 (1997).
doi: 10.1098/rspb.1997.0067
Penney, D. et al. Absence of ancient DNA in sub-fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS ONE 8, e73150 (2013).
pubmed: 24039876
pmcid: 3770633
doi: 10.1371/journal.pone.0073150
Peris, D. et al. DNA from resin-embedded organisms: past, present and future. PLoS ONE 15, e0239521 (2020).
pubmed: 32986737
pmcid: 7521698
doi: 10.1371/journal.pone.0239521
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).
pubmed: 21179161
pmcid: 4306417
doi: 10.1038/nature09710
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
pubmed: 22936568
pmcid: 3617501
doi: 10.1126/science.1224344
Prüfer, K. et al. The complete genome sequence of a Neandertal from the Altai Mountains. Nature 505, 43–49 (2014).
pubmed: 24352235
doi: 10.1038/nature12886
Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).
pubmed: 28982794
pmcid: 6185897
doi: 10.1126/science.aao1887
Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).
pubmed: 26976447
doi: 10.1038/nature17405
Gilbert, M. T., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 20, 541–544 (2005).
pubmed: 16701432
doi: 10.1016/j.tree.2005.07.005
Willerslev, E. & Cooper, A. Ancient DNA. Proc. Biol. Sci. 272, 3–16 (2005).
pubmed: 15875564
Penney, D., Wadsworth, C. & Green, D. I. Extraction of inclusions from (sub)fossil resins, with description of a new species of stingless bee (Hymenoptera: Apidae: Meliponini), in quaternary Colombian copal. Paleontol. Contrib. 2013, 7:1–6 (2013).
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 6, pdb.prot5448 (2010).
doi: 10.1101/pdb.prot5448
Modi, A. et al. Complete mitochondrial sequences from Mesolithic Sardinia. Sci. Rep. 7, 42869 (2017).
pubmed: 28256601
pmcid: 5335606
doi: 10.1038/srep42869
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
pubmed: 27036623
pmcid: 4815194
doi: 10.1186/s13059-016-0918-z
Andrews, S. FastQC: a quality control tool for high throughput sequence data (2010). Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012).
pubmed: 22574660
pmcid: 3468387
doi: 10.1186/1471-2164-13-178
Li, H. et al. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Altschul, S. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
doi: 10.1016/S0022-2836(05)80360-2
Jackman, S. D. et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 27, 768–777 (2017).
pubmed: 28232478
pmcid: 5411771
doi: 10.1101/gr.214346.116
Huson, D. H. et al. MEGAN community edition: interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
pubmed: 27327495
pmcid: 4915700
doi: 10.1371/journal.pcbi.1004957
Hofreiter, M., Jaenicke, V., Serre, D., Haeseler, A. & Pääbo, S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 9, 4793–4799 (2011).
Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U. S. A. 104, 14616–14621 (2007).
pubmed: 17715061
pmcid: 1976210
doi: 10.1073/pnas.0704665104
Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012).
pubmed: 22479540
pmcid: 3316601
doi: 10.1371/journal.pone.0034131
Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
pubmed: 23613487
pmcid: 3694634
doi: 10.1093/bioinformatics/btt193
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
pubmed: 15034147
pmcid: 390337
doi: 10.1093/nar/gkh340
Kumar, S. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887
pmcid: 5967553
doi: 10.1093/molbev/msy096
Noonan, J. P. et al. Genomic sequencing of pleistocene cave bears. Science 309, 597–599 (2005).
pubmed: 15933159
doi: 10.1126/science.1113485
Green, R. E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).
pubmed: 17108958
doi: 10.1038/nature05336
Garcia-Garcera, M. et al. Fragmentation of contaminant and endogenous DNA in ancient samples determined by shotgun sequencing; prospects for human palaeogenomics. PLoS ONE 6, e24161 (2011).
pubmed: 21904610
pmcid: 3164143
doi: 10.1371/journal.pone.0024161
Llamas, B. et al. From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR 3, 1–14 (2017).
doi: 10.1080/20548923.2016.1258824
Wintertona, S. L., Brian, M. W. & Evert, I. S. Phylogeny and Bayesian divergence time estimations of small-headed Xies (Diptera: Acroceridae) using multiple molecular markers. Mol. Phylogenet. Evol. 43, 808–832 (2007).
doi: 10.1016/j.ympev.2006.08.015
Gillung, J. P. & Wintertona, S. L. Evolution of fossil and living spider flies based onmorphological and molecular data (Diptera, Acroceridae). Syst. Entomol. 44, 820–841 (2019).
doi: 10.1111/syen.12358
Klasson, L. et al. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc. Natl. Acad. Sci. U. S. A. 106, 5725–5730 (2009).
pubmed: 19307581
pmcid: 2659715
doi: 10.1073/pnas.0810753106
Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–327 (2013).
pubmed: 23435259
pmcid: 3612374
doi: 10.1038/nmeth.2375