Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants.
Arabidopsis
/ genetics
Arabidopsis Proteins
/ genetics
Clathrin
/ genetics
Luminescent Proteins
/ genetics
Microscopy, Confocal
/ methods
Microscopy, Electron, Transmission
Plants, Genetically Modified
Protein Transport
R-SNARE Proteins
/ genetics
Vacuoles
/ metabolism
trans-Golgi Network
/ metabolism
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 03 2021
26 03 2021
Historique:
received:
03
04
2020
accepted:
06
03
2021
entrez:
27
3
2021
pubmed:
28
3
2021
medline:
13
4
2021
Statut:
epublish
Résumé
The trans-Golgi network (TGN) has been known as a key platform to sort and transport proteins to their final destinations in post-Golgi membrane trafficking. However, how the TGN sorts proteins with different destinies still remains elusive. Here, we examined 3D localization and 4D dynamics of TGN-localized proteins of Arabidopsis thaliana that are involved in either secretory or vacuolar trafficking from the TGN, by a multicolor high-speed and high-resolution spinning-disk confocal microscopy approach that we developed. We demonstrate that TGN-localized proteins exhibit spatially and temporally distinct distribution. VAMP721 (R-SNARE), AP (adaptor protein complex)-1, and clathrin which are involved in secretory trafficking compose an exclusive subregion, whereas VAMP727 (R-SNARE) and AP-4 involved in vacuolar trafficking compose another subregion on the same TGN. Based on these findings, we propose that the single TGN has at least two subregions, or "zones", responsible for distinct cargo sorting: the secretory-trafficking zone and the vacuolar-trafficking zone.
Identifiants
pubmed: 33772008
doi: 10.1038/s41467-021-22267-0
pii: 10.1038/s41467-021-22267-0
pmc: PMC7997971
doi:
Substances chimiques
AT3G54300 protein, Arabidopsis
0
Arabidopsis Proteins
0
Clathrin
0
Luminescent Proteins
0
R-SNARE Proteins
0
VAMP721 protein, Arabidopsis
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1901Références
Griffiths, G. & Simons, K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–443 (1986).
pubmed: 2945253
doi: 10.1126/science.2945253
Staehelin, L. A. & Moore, I. The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 261–288 (1995).
doi: 10.1146/annurev.pp.46.060195.001401
Gendre, D., Jonsson, K., Boutté, Y. & Bhalerao, R. P. Journey to the cell surface—the central role of the trans-Golgi network in plants. Protoplasma 252, 385–398 (2015).
pubmed: 25187082
doi: 10.1007/s00709-014-0693-1
Staehelin, L. A. & Kang, B. H. Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol. 147, 1454–1468 (2008).
pubmed: 18678738
pmcid: 2492626
doi: 10.1104/pp.108.120618
Kang, B. H., Nielsen, E., Preuss, M. L., Mastronarde, D. & Staehelin, L. A. Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12, 313–329 (2011).
pubmed: 21134079
doi: 10.1111/j.1600-0854.2010.01146.x
Viotti, C. et al. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22, 1344–1357 (2010).
pubmed: 20435907
pmcid: 2879741
doi: 10.1105/tpc.109.072637
Lipka, V., Kwon, C. & Panstruga, R. SNARE-Ware: the role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23, 147–174 (2007).
pubmed: 17506694
doi: 10.1146/annurev.cellbio.23.090506.123529
Saito, C. & Ueda, T. Chapter 4: functions of RAB and SNARE proteins in plant life. Int. Rev. Cell Mol. Biol. 274, 188–233 (2009).
Koike, S. & Jahn, R. SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nat. Commun. 10, 1608 (2019).
pubmed: 30962439
pmcid: 6453939
doi: 10.1038/s41467-019-09617-9
Bassham, D. C., Sanderfoot, A. A., Kovaleva, V., Zheng, H. & Raikhel, N. V. AtVPS45 complex formation at the trans-Golgi network. Mol. Biol. Cell 11, 2251–2265 (2000).
pubmed: 10888666
pmcid: 14917
doi: 10.1091/mbc.11.7.2251
Sanderfoot, A. A., Kovaleva, V., Bassham, D. C. & Raikhel, N. V. Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell 12, 3733–3743 (2001).
pubmed: 11739776
pmcid: 60751
doi: 10.1091/mbc.12.12.3733
Uemura, T. et al. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65 (2004).
pubmed: 15342965
doi: 10.1247/csf.29.49
Kwon, C. et al. Co-option of a default secretory pathway for plant immune responses. Nature 451, 835–840 (2008).
pubmed: 18273019
doi: 10.1038/nature06545
El Kasmi, F. et al. SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593–1601 (2013).
pubmed: 23515225
pmcid: 3655819
doi: 10.1091/mbc.e13-02-0074
Zhang, L. et al. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS ONE 6, e26129 (2011).
pubmed: 22022536
pmcid: 3191180
doi: 10.1371/journal.pone.0026129
Uemura, T. et al. A Golgi-released subpopulation of the trans-Golgi network mediates protein secretion in Arabidopsis. Plant Physiol. 179, 519–532 (2019).
pubmed: 30545905
doi: 10.1104/pp.18.01228
Ebine, K. et al. A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20, 3006–3021 (2008).
pubmed: 18984676
pmcid: 2613668
doi: 10.1105/tpc.107.057711
Boehm, M. & Bonifacino, J. S. Adaptins: the final recount. Mol. Biol. Cell 12, 2907–2920 (2001).
pubmed: 11598180
pmcid: 60144
doi: 10.1091/mbc.12.10.2907
Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).
pubmed: 11454451
doi: 10.1016/S0955-0674(00)00235-0
Hirst, J. et al. The fifth adaptor protein complex. PLoS Biol. 9, e1001170 (2011).
pubmed: 22022230
pmcid: 3191125
doi: 10.1371/journal.pbio.1001170
Robinson, D. G. & Pimpl, P. Clathrin and post-Golgi trafficking: a very complicated issue. Trends Plant Sci. 19, 134–139 (2014).
pubmed: 24263003
doi: 10.1016/j.tplants.2013.10.008
Shimada, T. et al. The AP-1 complex is required for proper mucilage formation in Arabidopsis seeds. Plant Cell Physiol. 59, 2331–2338 (2018).
pubmed: 30099531
Park, M. et al. Arabidopsis μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc. Natl Acad. Sci. USA 110, 10318–10323 (2013).
pubmed: 23733933
doi: 10.1073/pnas.1300460110
pmcid: 3690844
Teh, O. K. et al. The AP-1 μ adaptin is required for KNOLLE localization at the cell plate to mediate cytokinesis in Arabidopsis. Plant Cell Physiol. 54, 838–847 (2013).
pubmed: 23543752
doi: 10.1093/pcp/pct048
Wang, J. G. et al. HAPLESS13, the Arabidopsis μ1 adaptin, is essential for protein sorting at the trans-Golgi network/early endosome. Plant Physiol. 162, 1897–1910 (2013).
pubmed: 23766365
pmcid: 3729769
doi: 10.1104/pp.113.221051
Wang, X. et al. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. Plant Cell 26, 4102–4118 (2014).
pubmed: 25351491
pmcid: 4247576
doi: 10.1105/tpc.114.129759
Wang, J. G. et al. HAPLESS13-mediated trafficking of STRUBBELIG is critical for ovule development in Arabidopsis. PLoS Genet. 12, 1–21 (2016).
doi: 10.1371/journal.pgen.1006269
Wang, J. G. et al. AP1G mediates vacuolar acidification during synergid-controlled pollen tube reception. Proc. Natl Acad. Sci. USA 114, E4877–E4883 (2017).
pubmed: 28559348
pmcid: 5474829
Fuji, K. et al. The adaptor complex AP-4 regulates vacuolar protein sorting at the trans-Golgi network by interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiol. 170, 211–219 (2016).
pubmed: 26546666
doi: 10.1104/pp.15.00869
Müdsam, C., Wollschläger, P., Sauer, N. & Schneider, S. Sorting of Arabidopsis NRAMP3 and NRAMP4 depends on adaptor protein complex AP4 and a dileucine-based motif. Traffic 19, 503–521 (2018).
pubmed: 29573093
doi: 10.1111/tra.12567
Kurokawa, K., Ishii, M., Suda, Y., Ichihara, A. & Nakano, A. Live cell visualization of golgi membrane dynamics by super-resolution confocal live imaging microscopy. Methods Cell Biol. 118, 235–242 (2013).
pubmed: 24295310
doi: 10.1016/B978-0-12-417164-0.00014-8
Kurokawa, K. et al. Visualization of secretory cargo transport within the Golgi apparatus. J. Cell Biol. 218, 1602–1618 (2019).
pubmed: 30858192
pmcid: 6504898
doi: 10.1083/jcb.201807194
Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.-D. & Schumacher, K. Vacuolar H
pubmed: 16461582
pmcid: 1383645
doi: 10.1105/tpc.105.037978
Nishi, T. & Forgac, M. The vacuolar (H
pubmed: 11836511
doi: 10.1038/nrm729
Boevink, P. et al. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441–447 (1998).
pubmed: 9750355
doi: 10.1046/j.1365-313X.1998.00208.x
Miller, S. E., Collins, B. M., McCoy, A. J., Robinson, M. S. & Owen, D. J. A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 450, 570–574 (2007).
pubmed: 18033301
doi: 10.1038/nature06353
Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).
pubmed: 18775314
pmcid: 2648964
doi: 10.1016/j.cell.2008.07.023
Miller, S. E. et al. The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147, 1118–1131 (2011).
pubmed: 22118466
pmcid: 3267021
doi: 10.1016/j.cell.2011.10.038
Keen, J. H. Clathrin assembly proteins: affinity purification and a model for coat assembly. J. Cell Biol. 105, 1989–1998 (1987).
pubmed: 2890644
doi: 10.1083/jcb.105.5.1989
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).
pubmed: 21779028
doi: 10.1038/nrm3151
Bashline, L., Li, S., Anderson, C. T., Lei, L. & Gu, Y. The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clathrin-mediated endocytosis adaptin. Plant Physiol. 163, 150–160 (2013).
pubmed: 23843604
pmcid: 3762637
doi: 10.1104/pp.113.221234
Di Rubbo, S. et al. The clathrin adaptor complex AP-2 mediates endocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis. Plant Cell 25, 2986–2997 (2013).
pubmed: 23975899
pmcid: 3784593
doi: 10.1105/tpc.113.114058
Kim, S. Y. et al. Adaptor protein complex 2-mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. Plant Cell 25, 2970–2985 (2013).
pubmed: 23975898
pmcid: 3784592
doi: 10.1105/tpc.113.114264
Yamaoka, S. et al. Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. Plant Cell 25, 2958–2969 (2013).
pubmed: 23975897
pmcid: 3784591
doi: 10.1105/tpc.113.114082
Ito, E. et al. Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J. 69, 204–216 (2012).
pubmed: 21910772
doi: 10.1111/j.1365-313X.2011.04782.x
Uemura, T., Suda, Y., Ueda, T. & Nakano, A. Dynamic behavior of the trans-golgi network in root tissues of arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol. 55, 694–703 (2014).
pubmed: 24443496
doi: 10.1093/pcp/pcu010
Chen, X., Irani, N. G. & Friml, J. Clathrin-mediated endocytosis: the gateway into plant cells. Curr. Opin. Plant Biol. 14, 674–682 (2011).
pubmed: 21945181
doi: 10.1016/j.pbi.2011.08.006
Dell’Angelica, E. C. Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol. 11, 315–318 (2001).
pubmed: 11489622
doi: 10.1016/S0962-8924(01)02043-8
Lemmon, S. K. & Traub, L. M. Getting in touch with the clathrin terminal domain. Traffic 13, 511–519 (2012).
pubmed: 22239657
pmcid: 3330156
doi: 10.1111/j.1600-0854.2011.01321.x
Narasimhan, M. et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. Elife 9, 1–30 (2020).
doi: 10.7554/eLife.52067
Klumperman, J. Architecture of the mammalian Golgi. Cold Spring Harb. Perspect. Biol. 3, 1–19 (2011).
doi: 10.1101/cshperspect.a005181
Tojima, T., Suda, Y., Ishii, M., Kurokawa, K. & Nakano, A. Spatiotemporal dissection of the trans-Golgi network in budding yeast. J. Cell Sci. 132, jcs231159 (2019).
pubmed: 31289195
pmcid: 6703704
doi: 10.1242/jcs.231159
Fujii, S. et al. Recycling endosomes attach to the trans-side of Golgi stacks in Drosophila and mammalian cells. J. Cell Sci. 133, jcs236935 (2020).
pubmed: 31974113
doi: 10.1242/jcs.236935
Chow, C. M., Neto, H., Foucart, C. & Moore, I. Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20, 101–123 (2008).
pubmed: 18239134
pmcid: 2254926
doi: 10.1105/tpc.107.052001
Gendre, D. et al. Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc. Natl Acad. Sci. USA 108, 8048–8053 (2011).
pubmed: 21512130
doi: 10.1073/pnas.1018371108
pmcid: 3093476
Gendre, D. et al. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25, 2633–2646 (2013).
pubmed: 23832588
pmcid: 3753388
doi: 10.1105/tpc.113.112482
Boutté, Y. et al. ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc. Natl Acad. Sci. USA 110, 16259–16264 (2013).
pubmed: 24043780
doi: 10.1073/pnas.1309057110
pmcid: 3791722
Wattelet-Boyer, V. et al. Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat. Commun. 7, 12788 (2016).
pubmed: 27681606
pmcid: 5056404
doi: 10.1038/ncomms12788
Ravikumar, R. et al. Independent yet overlapping pathways ensure the robustness and responsiveness of trans-Golgi network functions in Arabidopsis. Development 145, dev169201 (2018).
pubmed: 30404777
doi: 10.1242/dev.169201
Renna, L. et al. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat. Commun. 9, 5313 (2018).
pubmed: 30552321
pmcid: 6294250
doi: 10.1038/s41467-018-07662-4
Toyooka, K. et al. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21, 1212–1229 (2009).
pubmed: 19376937
pmcid: 2685622
doi: 10.1105/tpc.108.058933
Ebine, K. et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 13, 853–859 (2011).
pubmed: 21666683
doi: 10.1038/ncb2270
Uemura, T. et al. Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc. Natl Acad. Sci. USA 109, 1784–1789 (2012).
pubmed: 22307646
doi: 10.1073/pnas.1115146109
pmcid: 3277133
Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).
pubmed: 21765402
pmcid: 3152693
doi: 10.1038/nbt.1918
Goh, T. et al. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19, 3504–3515 (2007).
pubmed: 18055610
pmcid: 2174884
doi: 10.1105/tpc.107.053876
Costes, S. V. et al. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86, 3993–4003 (2004).
pubmed: 15189895
pmcid: 1304300
doi: 10.1529/biophysj.103.038422
Boutté, Y. & Grebe, M. Immunocytochemical fluorescent in situ visualization of proteins in Arabidopsis. Methods Mol. Biol. 1062, 453–472 (2014).
pubmed: 24057381
doi: 10.1007/978-1-62703-580-4_24
Ueda, T., Yamaguchi, M., Uchimiya, H. & Nakano, A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 20, 4730–4741 (2001).
pubmed: 11532937
pmcid: 125591
doi: 10.1093/emboj/20.17.4730
Ohgane, K. & Yoshioka, H. Quantification of gel bands by an Image J macro, band/peak quantification tool. protocols.io https://doi.org/10.17504/protocols.io.7vghn3w (2019).