Molecular Characterization of the Extracellular Domain of Human Junctional Adhesion Proteins.
Antigens, CD
/ chemistry
Cadherins
/ chemistry
Chromatography
Circular Dichroism
Claudins
/ chemistry
Computational Biology
Computer Simulation
Escherichia coli
/ metabolism
Humans
Junctional Adhesion Molecules
/ metabolism
Kinetics
Maltose-Binding Proteins
/ chemistry
Occludin
/ chemistry
Protein Binding
Protein Domains
Protein Interaction Mapping
Protein Structure, Secondary
Surface Plasmon Resonance
Tight Junctions
/ metabolism
adherens junction
cadherin
junctional adhesion molecules
tight junction
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
27 Mar 2021
27 Mar 2021
Historique:
received:
16
03
2021
revised:
24
03
2021
accepted:
25
03
2021
entrez:
3
4
2021
pubmed:
4
4
2021
medline:
9
7
2021
Statut:
epublish
Résumé
The junction adhesion molecule (JAM) family of proteins play central roles in the tight junction (TJ) structure and function. In contrast to claudins (CLDN) and occludin (OCLN), the other membrane proteins of the TJ, whose structure is that of a 4α-helix bundle, JAMs are members of the immunoglobulin superfamily. The JAM family is composed of four members: A, B, C and 4. The crystal structure of the extracellular domain of JAM-A continues to be used as a template to model the secondary and tertiary structure of the other members of the family. In this article, we have expressed the extracellular domains of JAMs fused with maltose-binding protein (MBP). This strategy enabled the work presented here, since JAM-B, JAM-C and JAM4 are more difficult targets due to their more hydrophobic nature. Our results indicate that each member of the JAM family has a unique tertiary structure in spite of having similar secondary structures. Surface plasmon resonance (SPR) revealed that heterotypic interactions among JAM family members can be greatly favored compared to homotypic interactions. We employ the well characterized epithelial cadherin (E-CAD) as a means to evaluate the adhesive properties of JAMs. We present strong evidence that suggests that homotypic or heterotypic interactions among JAMs are stronger than that of E-CADs.
Identifiants
pubmed: 33801758
pii: ijms22073482
doi: 10.3390/ijms22073482
pmc: PMC8037251
pii:
doi:
Substances chimiques
Antigens, CD
0
CDH1 protein, human
0
Cadherins
0
Claudins
0
Junctional Adhesion Molecules
0
Maltose-Binding Proteins
0
Occludin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Cell Mol Life Sci. 2018 Apr;75(8):1393-1409
pubmed: 29238845
Methods Enzymol. 1990;182:477-88
pubmed: 1690330
J Clin Invest. 2004 Sep;114(5):729-38
pubmed: 15343392
Methods Mol Biol. 2010;627:55-73
pubmed: 20217613
Structure. 1997 Aug 15;5(8):997-1015
pubmed: 9309217
Am J Physiol Renal Physiol. 2006 Jan;290(1):F20-34
pubmed: 16339962
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5366-71
pubmed: 12697893
Int J Artif Organs. 2010 Jan;33(1):5-14
pubmed: 20127656
FEBS Lett. 2001 Aug 31;504(3):94-8
pubmed: 11532439
Biochim Biophys Acta. 2009 Apr;1788(4):761-7
pubmed: 19121284
J Mol Biol. 2007 Oct 19;373(2):401-11
pubmed: 17850815
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11594-9
pubmed: 19553217
Trends Cell Biol. 2020 Oct;30(10):805-817
pubmed: 32891490
Exp Cell Res. 2017 Sep 1;358(1):39-44
pubmed: 28372972
J Biol Chem. 2004 Apr 16;279(16):16254-62
pubmed: 14749337
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183316
pubmed: 32360073
Science. 2005 Feb 25;307(5713):1317-21
pubmed: 15731457
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Carcinogenesis. 2015 Jan;36(1):41-8
pubmed: 25416560
Methods. 2018 Sep 1;147:1-2
pubmed: 30219201
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4175-84
pubmed: 25253890
Microb Cell Fact. 2012 May 08;11:56
pubmed: 22569138
Mol Cell Biol. 2003 Jun;23(12):4267-82
pubmed: 12773569
Cells. 2018 Mar 26;7(4):
pubmed: 29587442
Protein Sci. 2003 Jul;12(7):1313-22
pubmed: 12824478
Physiol Rev. 2017 Oct 1;97(4):1529-1554
pubmed: 28931565
Mol Microbiol. 2015 Dec;98(5):878-94
pubmed: 26268698
J Chem Educ. 2010 Jul;87(7):742-746
pubmed: 21359107
Trends Cancer. 2015 Sep;1(1):44-52
pubmed: 28741562
Fluids Barriers CNS. 2019 Jan 29;16(1):3
pubmed: 30691500
Tissue Barriers. 2016 Jan 08;4(1):e1138017
pubmed: 27141420
Sci Rep. 2017 Jul 3;7(1):4502
pubmed: 28674421
Nat Rev Neurosci. 2014 Apr;15(4):217-32
pubmed: 24646670
Nat Rev Immunol. 2007 Jun;7(6):467-77
pubmed: 17525755
Int J Biol Macromol. 2017 Jun;99:394-400
pubmed: 28258005
Protein Expr Purif. 2005 Oct;43(2):103-10
pubmed: 16139753
Cell Mol Life Sci. 2008 Nov;65(23):3756-88
pubmed: 18726070
Mol Cell Biol. 2006 Nov;26(22):8498-506
pubmed: 16982697
Mol Med Rep. 2015 Sep;12(3):3257-3264
pubmed: 25998845
Arterioscler Thromb Vasc Biol. 2016 Oct;36(10):2048-2057
pubmed: 27515379
J Cell Sci. 2008 Nov 15;121(Pt 22):3677-82
pubmed: 18987354
Nature. 2004 Sep 16;431(7006):320-4
pubmed: 15372036
Biophys Rev. 2019 Oct;11(5):783-793
pubmed: 31586306
Mol Pharm. 2012 Sep 4;9(9):2523-33
pubmed: 22827574
Appl Biochem Biotechnol. 2005 Aug;126(2):79-92
pubmed: 16118464
J Cell Sci. 2004 Jan 1;117(Pt 1):19-29
pubmed: 14657270