Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
07 2021
Historique:
received: 14 10 2020
accepted: 04 03 2021
pubmed: 17 4 2021
medline: 8 9 2021
entrez: 16 4 2021
Statut: ppublish

Résumé

CUB domain-containing protein 1 (CDCP1) is an oncogenic orphan transmembrane receptor and a promising target for the detection and treatment of cancer. Extracellular proteolysis of CDCP1 by poorly defined mechanisms induces pro-metastatic signaling. We describe a new approach for the rapid identification of proteases responsible for key proteolytic events using a substrate-biased activity-based probe (sbABP) that incorporates a substrate cleavage motif grafted onto a peptidyl diphenyl phosphonate warhead for specific target protease capture, isolation and identification. Using a CDCP1-biased probe, we identify urokinase (uPA) as the master regulator of CDCP1 proteolysis, which acts both by directly cleaving CDCP1 and by activating CDCP1-cleaving plasmin. We show that coexpression of uPA and CDCP1 is strongly predictive of poor disease outcome across multiple cancers and demonstrate that uPA-mediated CDCP1 proteolysis promotes metastasis in disease-relevant preclinical in vivo models. These results highlight CDCP1 cleavage as a potential target to disrupt cancer and establish sbABP technology as a new approach to identify disease-relevant proteases.

Identifiants

pubmed: 33859413
doi: 10.1038/s41589-021-00783-w
pii: 10.1038/s41589-021-00783-w
doi:

Substances chimiques

Antigens, Neoplasm 0
CDCP1 protein, human 0
Cell Adhesion Molecules 0
Peptide Hydrolases EC 3.4.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

776-783

Références

Rawlings, N. D. & Barrett, A. J. Evolutionary families of peptidases. Biochem. J. 290, 205–218 (1993).
pubmed: 8439290 pmcid: 1132403 doi: 10.1042/bj2900205
Ten Cate, H. et al. Coagulation factor and protease pathways in thrombosis and cardiovascular disease. Thromb. Haemost. 117, 1265–1271 (2017).
pubmed: 28594052 doi: 10.1160/TH17-02-0079
Weidmann, H. et al. The plasma contact system, a protease cascade at the nexus of inflammation, coagulation and immunity. Biochim. Biophys. Acta Mol. Cell. Res. 1864, 2118–2127 (2017).
pubmed: 28743596 doi: 10.1016/j.bbamcr.2017.07.009
Prassas, I. et al. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat. Rev. Drug Discov. 14, 183–202 (2015).
pubmed: 25698643 doi: 10.1038/nrd4534
Hermann, M. et al. Deficits in developmental neurogenesis and dendritic spine maturation in mice lacking the serine protease inhibitor neuroserpin. Mol. Cell Neurosci. 102, 103420 (2020).
pubmed: 31805346 doi: 10.1016/j.mcn.2019.103420
Toriseva, M. & Kahari, V. M. Proteinases in cutaneous wound healing. Cell. Mol. Life Sci. 66, 203–224 (2009).
pubmed: 18810321 doi: 10.1007/s00018-008-8388-4
Mitschke, J. et al. The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer Metastasis Rev. 38, 431–444 (2019).
pubmed: 31482486 doi: 10.1007/s10555-019-09808-2
Stepanova, V. V. & Tkachuk, V. A. Urokinase as a multidomain protein and polyfunctional cell regulator. Biochem. (Mosc.) 67, 109–118 (2002).
doi: 10.1023/A:1013912500373
Kryza, T. et al. The kallikrein-related peptidase family: dysregulation and functions during cancer progression. Biochimie 122, 283–299 (2016).
pubmed: 26343558 doi: 10.1016/j.biochi.2015.09.002
Millet, J. K. & Whittaker, G. R. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202, 120–134 (2015).
pubmed: 25445340 doi: 10.1016/j.virusres.2014.11.021
Mohajeri, M. et al. Mast cell tryptase—marker and maker of cardiovascular diseases. Pharmacol. Ther. 199, 91–110 (2019).
pubmed: 30877022 doi: 10.1016/j.pharmthera.2019.03.008
Santibanez, J. F. & Krstic, J. Transforming growth factor-β and urokinase type plasminogen interplay in cancer. Curr. Protein Pept. Sci. 19, 1155–1163 (2018).
pubmed: 29086689 doi: 10.2174/1389203718666171030103801
Vasiljeva, O. et al. The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation. Biol. Chem. 400, 965–977 (2019).
Luo, S. Y. et al. Protease substrate identification using N-terminomics. ACS Chem. Biol. 14, 2361–2371 (2019).
pubmed: 31368682 doi: 10.1021/acschembio.9b00398
Silva, L. M. et al. Integration of two in-depth quantitative proteomics approaches determines the kallikrein-related peptidase 7 (KLK7) degradome in ovarian cancer cell secretome. Mol. Cell Proteom. 18, 818–836 (2019).
doi: 10.1074/mcp.RA118.001304
Song, J. et al. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics 34, 684–687 (2018).
pubmed: 29069280 doi: 10.1093/bioinformatics/btx670
Deng, H. et al. Activity-based protein profiling: recent advances in medicinal chemistry. Eur. J. Med. Chem. 191, 112151 (2020).
pubmed: 32109778 doi: 10.1016/j.ejmech.2020.112151
Powers, J. C. et al. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).
pubmed: 12475205 doi: 10.1021/cr010182v
Maslanka, M. & Mucha, A. Recent developments in peptidyl diaryl phoshonates as inhibitors and activity-based probes for serine proteases. Pharmaceuticals 12, 86 (2019).
Maluch, I. et al. Applications of unnatural amino acids in protease probes. Chem. Asian J. 14, 4103–4113 (2019).
pubmed: 31593336 doi: 10.1002/asia.201901152
Khan, T. et al. The CDCP1 signalling hub: a target for cancer detection and therapeutic intervention. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-2978 (2021).
Chen, Y. et al. Development of an enzyme-linked immunosorbent assay for detection of CDCP1 shed from the cell surface and present in colorectal cancer serum specimens. J. Pharm. Biomed. Anal. 139, 65–72 (2017).
pubmed: 28279929 doi: 10.1016/j.jpba.2017.02.047
He, Y. et al. Evidence that cell surface localization of serine protease activity facilitates cleavage of the protease activated receptor CDCP1. Biol. Chem. 399, 1091–1097 (2018).
pubmed: 29447112 doi: 10.1515/hsz-2017-0308
He, Y. et al. Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCδ. J. Biol. Chem. 285, 26162–26173 (2010).
pubmed: 20551327 pmcid: 2924022 doi: 10.1074/jbc.M109.096453
Kryza, T. et al. Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma. Theranostics 10, 4116–4133 (2020).
pubmed: 32226543 pmcid: 7086361 doi: 10.7150/thno.43589
Casar, B. et al. In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene 33, 255–268 (2014).
pubmed: 23208492 doi: 10.1038/onc.2012.547
Wright, H. J. et al. CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene 35, 4762–4772 (2016).
pubmed: 26876198 pmcid: 4985505 doi: 10.1038/onc.2016.7
Law, M. E. et al. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene 32, 1316–1329 (2013).
pubmed: 22543582 doi: 10.1038/onc.2012.138
Serim, S. et al. Tuning activity-based probe selectivity for serine proteases by on-resin ‘click’ construction of peptide diphenyl phosphonates. Org. Biomol. Chem. 11, 5714–5721 (2013).
pubmed: 23884325 doi: 10.1039/c3ob40907d
Jaiswal, R. K. et al. Diversity and functional evolution of the plasminogen activator system. Biomed. Pharmacother. 98, 886–898 (2018).
pubmed: 29571259 doi: 10.1016/j.biopha.2018.01.029
Madunic, J. The urokinase plasminogen activator system in human cancers: an overview of its prognostic and predictive role. Thromb. Haemost. 118, 2020–2036 (2018).
pubmed: 30419600 doi: 10.1055/s-0038-1675399
Mahmood, N. et al. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front. Oncol. 8, 24 (2018).
pubmed: 29484286 pmcid: 5816037 doi: 10.3389/fonc.2018.00024
Marino, G. et al. Protein termini and their modifications revealed by positional proteomics. ACS Chem. Biol. 10, 1754–1764 (2015).
pubmed: 26042555 doi: 10.1021/acschembio.5b00189
Dallas, D. C. et al. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15, 1026–1038 (2015).
pubmed: 25429922 pmcid: 4371869 doi: 10.1002/pmic.201400310
Rut, W. et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci. Adv. 6, eabd4596 (2020).
Casar, B. et al. Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene 31, 3924–3938 (2012).
pubmed: 22179830 doi: 10.1038/onc.2011.555
Bhatt, A. S. et al. Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene 24, 5333–5343 (2005).
pubmed: 16007225 pmcid: 3023961 doi: 10.1038/sj.onc.1208582
Brown, T. A. et al. Adhesion or plasmin regulates tyrosine phosphorylation of a novel membrane glycoprotein p80/gp140/CUB domain-containing protein 1 in epithelia. J. Biol. Chem. 279, 14772–14783 (2004).
pubmed: 14739293 doi: 10.1074/jbc.M309678200
Ulisse, S. et al. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr. Cancer Drug Targets 9, 32–71 (2009).
pubmed: 19200050 doi: 10.2174/156800909787314002
Sieber, S. A. et al. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol. 2, 274–281 (2006).
pubmed: 16565715 pmcid: 1538544 doi: 10.1038/nchembio781
Pollan, S. G. et al. Regulation of inside-out β1-integrin activation by CDCP1. Oncogene 37, 2817–2836 (2018).
pubmed: 29511352 pmcid: 6824599 doi: 10.1038/s41388-018-0142-2
Chou, A. et al. Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut 67, 2142–2155 (2018).
pubmed: 29080858 doi: 10.1136/gutjnl-2017-315144
He, Y. et al. Elevated CDCP1 predicts poor patient outcome and mediates ovarian clear cell carcinoma by promoting tumor spheroid formation, cell migration and chemoresistance. Oncogene 35, 468–478 (2016).
pubmed: 25893298 doi: 10.1038/onc.2015.101
Harrington, B. S. et al. Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer. Br. J. Cancer 114, 417–426 (2016).
pubmed: 26882065 pmcid: 4815773 doi: 10.1038/bjc.2015.471
Harrington, B. S. et al. Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer. Theranostics 10, 2095–2114 (2020).
pubmed: 32104500 pmcid: 7019151 doi: 10.7150/thno.30736

Auteurs

Thomas Kryza (T)

Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.

Tashbib Khan (T)

Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.

Scott Lovell (S)

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK.
Department of Pathology, Stanford University, Stanford, CA, USA.

Brittney S Harrington (BS)

Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.

Julia Yin (J)

The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
St Vincent's Clinical School, Faculty of Medicine, University of NSW Sydney, Sydney, New South Wales, Australia.

Sean Porazinski (S)

The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
St Vincent's Clinical School, Faculty of Medicine, University of NSW Sydney, Sydney, New South Wales, Australia.

Marina Pajic (M)

The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
St Vincent's Clinical School, Faculty of Medicine, University of NSW Sydney, Sydney, New South Wales, Australia.

Hannu Koistinen (H)

Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Juha K Rantala (JK)

Misvik Biology, Turku, Finland.

Tobias Dreyer (T)

Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany.

Viktor Magdolen (V)

Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany.

Ute Reuning (U)

Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany.

Yaowu He (Y)

Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.

Edward W Tate (EW)

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK.

John D Hooper (JD)

Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia. john.hooper@mater.uq.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH