Using Small Molecules to Enhance P450 OleT Enzyme Activity in Situ.
1-alkenes
P450 OleT
biocatalysis
cytochromes
decarboxylases
enzyme-small molecule interactions
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
21 Jun 2021
21 Jun 2021
Historique:
received:
24
02
2021
pubmed:
17
4
2021
medline:
29
6
2021
entrez:
16
4
2021
Statut:
ppublish
Résumé
Cytochrome P450 OleT is a fatty acid decarboxylase that catalyzes the production of olefins with biofuel and synthetic applications. However, the relatively sluggish catalytic efficiency of the enzyme limits its applications. Here, we report the application of a novel class of benzene containing small molecules to improve the OleT activity. The UV-Vis spectroscopy study and molecular docking results confirmed the high proximity of the small molecules to the heme group of OleT. Up to 6-fold increase of product yield has been achieved in the small molecule-modulated enzymatic reactions. Our work thus sheds the light to the application of small molecules to increase the OleT catalytic efficiency, which could be potentially used for future olefin productions.
Identifiants
pubmed: 33860584
doi: 10.1002/chem.202100680
doi:
Substances chimiques
Alkenes
0
Fatty Acids
0
Cytochrome P-450 Enzyme System
9035-51-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8940-8945Subventions
Organisme : State Scholarship Fund
ID : 201806310084
Organisme : National Science Foundation
ID : #OIA-1655740
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
E. F. Aransiola, T. V. Ojumu, O. O. Oyekola, T. F. Madzimbamuto, D. I. O. Ikhu-Omoregbe, Biomass Bioenergy 2014, 61, 276-297.
S. Das, B. Join, K. Junge, M. Beller, Chem. Commun. 2012, 48, 2683-2685.
S. Das, K. Moller, K. Junge, M. Beller, Chem. Eur. J. 2011, 17, 7414-7417.
A. Robles-Medina, P. A. González-Moreno, L. Esteban-Cerdán, E. Molina-Grima, Biotechnol. Adv. 2009, 27, 398-408.
A. Dennig, S. Kurakin, M. Kuhn, A. Dordic, M. Hall, K. Faber, Eur. J. Org. Chem. 2016, 3473-3477.
Y. Qiu, C. Tittiger, C. Wicker-Thomas, G. Le Goff, S. Young, E. Wajnberg, T. Fricaux, N. Taquet, G. J. Blomquist, R. Feyereisen, Proc. Natl. Acad. Sci. USA 2012, 109, 14858-14863.
A. Schirmer, M. A. Rude, X. Li, E. Popova, S. B. del Cardayre, Science 2010, 329, 559-562.
Z. Rui, N. C. Harris, X. Zhu, W. Huang, W. Zhang, ACS Catal. 2015, 5, 7091-7094.
P. Kallio, A. Pásztor, K. Thiel, M. K. Akhtar, P. R. Jones, Nat. Commun. 2014, 5, 4731.
M. A. Rude, T. S. Baron, S. Brubaker, M. Alibhai, S. B. del Cardayre, A. Schirmer, Appl. Environ. Microbiol. 2011, 77, 1718-1727.
C. Lu, F. Shen, S. Wang, Y. Wang, J. Liu, W.-J. Bai, X. Wang, ACS Catal. 2018, 8, 5794-5798.
A. Dennig, M. Kuhn, S. Tassoti, A. Thiessenhusen, S. Gilch, T. Bulter, T. Haas, M. Hall, K. Faber, Angew. Chem. Int. Ed. 2015, 54, 8819-8822;
Angew. Chem. 2015, 127, 8943-8946;
Angew. Chem. 2015, 127, 8943-8822;
Angew. Chem. Int. Ed. 2015, 54, 8819-8822.
J. L. Grant, C. H. Hsieh, T. M. Makris, J. Am. Chem. Soc. 2015, 137, 4940-4943.
J. L. Grant, M. E. Mitchell, T. M. Makris, Proc. Natl. Acad. Sci. USA 2016, 113, 10049-10054.
C. E. Wise, C. H. Hsieh, N. L. Poplin, T. M. Makris, ACS Catal. 2018, 8, 9342-9352.
A. W. Munro, K. J. McLean, J. L. Grant, T. M. Makris, Biochem. Soc. Trans. 2018, 46, 183-196.
S. Matthews, K. L. Tee, N. J. Rattray, K. J. McLean, D. Leys, D. A. Parker, R. T. Blankley, A. W. Munro, FEBS Lett. 2017, 591, 737-750.
I. Zachos, S. K. Gassmeyer, D. Bauer, V. Sieber, F. Hollmann, R. Kourist, Chem. Commun. 2015, 51, 1918-1921.
J. A. Amaya, C. D. Rutland, T. M. Makris, J. Inorg. Biochem. 2016, 158, 11-16.
L. Zhang, O. M. Manley, D. Ma, Y. Yin, T. M. Makris, Q. Wang, Bioresour. Technol. 2020, 311, 123538.
J. A. Amaya, Mechanisms of Decarboxylation In The CYP152 Family Of Cytochrome, University of South Carolina, 2018.
Y. Jiang, Z. Li, C. Wang, Y. J. Zhou, H. Xu, S. Li, Biotechnol. Biofuels 2019, 12, 79.
J. B. Wang, R. Lonsdale, M. T. Reetz, Chem. Commun. 2016, 52, 8131-8133.
C. H. Hsieh, X. Huang, J. A. Amaya, C. D. Rutland, C. L. Keys, J. T. Groves, R. N. Austin, T. M. Makris, Biochemistry 2017, 56, 3347-3357.
C. H. Hsieh, T. M. Makris, Biochem. Biophys. Res. Commun. 2016, 476, 462-466.
S. Matthews, J. D. Belcher, K. L. Tee, H. M. Girvan, K. J. McLean, S. E. J. Rigby, C. W. Levy, D. Leys, D. A. Parker, R. T. Blankley, A. W. Munro, J. Biol. Chem. 2017, 292, 5128-5143.
J. A. Amaya, C. D. Rutland, N. Leschinsky, T. M. Makris, Biochemistry 2018, 57, 344-353.
D. Ma, L. Zhang, Y. Yin, Q. Wang, Chin. Chem. Lett. 2021, https://doi.org/10.1016/j.cclet.2020.09.042.
D. Ma, L. Zhang, Y. Yin, Y. Gao, Q. Wang, J. Pharm. Anal. 2020, https://doi.org/10.1016/j.jpha.2020.12.004.
M. A. Hummel, P. M. Gannett, J. S. Aguilar, T. S. Tracy, Biochemistry 2004, 34, 7207-7214.
M. D. Cameron, B. Wen, A. G. Roberts, W. M. Atkins, A. P. Campbell, S. D. Nelson, Chem. Res. Toxicol. 2007, 20, 1434-1441.
N. Mast, P. Verwilst, C. J. Wilkey, F. P. Guengerich, I. A. Pikuleva, J. Med. Chem. 2020, 63, 6477-6488.
O. Shoji, Y. Aiba, Y. Watanabe, Acc. Chem. Res. 2019, 52, 925-934.
M. Wang, M. Baaden, J. Wang, Z. Liang, J. Chem. Inf. Model. 2014, 54, 1218-1225.
A. Luthra, I. G. Denisov, S. G. Sligar, Arch. Biochem. Biophys. 2011, 507, 26-35.
C. W. Locuson, J. M. Hutzler, T. S. Tracy, Drug Metab. Dispos. 2007, 35, 614-622.
S. Matthews, K. L. Tee, N. J. Rattray, K. J. McLean, D. Leys, D. A. Parker, R. T. Blankley, A. W. Munro, FEBS Lett. 2017, 591, 737-750.
O. Shoji, T. Kunimatsu, N. Kawakami, Y. Watanabe, Angew. Chem. Int. Ed. 2013, 52, 6606-6610;
Angew. Chem. 2013, 125, 6738-6742;
Angew. Chem. 2013, 125, 6738-6610;
Angew. Chem. Int. Ed. 2013, 52, 6606-6610.
W. Zhang, M. Ma, M. M. E. Huijbers, G. A. Filonenko, E. A. Pidko, M. van Schie, S. de Boer, B. O. Burek, J. Z. Bloh, W. J. H. van Berkel, W. A. Smith, F. Hollmann, J. Am. Chem. Soc. 2019, 141, 3116-3120.
N. Ma, Z. Chen, J. Chen, J. Chen, C. Wang, H. Zhou, L. Yao, O. Shoji, Y. Watanabe, Z. Cong, Angew. Chem. Int. Ed. 2018, 57, 7628-7633;
Angew. Chem. 2018, 130, 7754-7759;
Angew. Chem. 2018, 130, 7754-7633;
Angew. Chem. Int. Ed. 2018, 57, 7628-7633.