Using Small Molecules to Enhance P450 OleT Enzyme Activity in Situ.

1-alkenes P450 OleT biocatalysis cytochromes decarboxylases enzyme-small molecule interactions

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
21 Jun 2021
Historique:
received: 24 02 2021
pubmed: 17 4 2021
medline: 29 6 2021
entrez: 16 4 2021
Statut: ppublish

Résumé

Cytochrome P450 OleT is a fatty acid decarboxylase that catalyzes the production of olefins with biofuel and synthetic applications. However, the relatively sluggish catalytic efficiency of the enzyme limits its applications. Here, we report the application of a novel class of benzene containing small molecules to improve the OleT activity. The UV-Vis spectroscopy study and molecular docking results confirmed the high proximity of the small molecules to the heme group of OleT. Up to 6-fold increase of product yield has been achieved in the small molecule-modulated enzymatic reactions. Our work thus sheds the light to the application of small molecules to increase the OleT catalytic efficiency, which could be potentially used for future olefin productions.

Identifiants

pubmed: 33860584
doi: 10.1002/chem.202100680
doi:

Substances chimiques

Alkenes 0
Fatty Acids 0
Cytochrome P-450 Enzyme System 9035-51-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8940-8945

Subventions

Organisme : State Scholarship Fund
ID : 201806310084
Organisme : National Science Foundation
ID : #OIA-1655740

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

E. F. Aransiola, T. V. Ojumu, O. O. Oyekola, T. F. Madzimbamuto, D. I. O. Ikhu-Omoregbe, Biomass Bioenergy 2014, 61, 276-297.
S. Das, B. Join, K. Junge, M. Beller, Chem. Commun. 2012, 48, 2683-2685.
S. Das, K. Moller, K. Junge, M. Beller, Chem. Eur. J. 2011, 17, 7414-7417.
A. Robles-Medina, P. A. González-Moreno, L. Esteban-Cerdán, E. Molina-Grima, Biotechnol. Adv. 2009, 27, 398-408.
A. Dennig, S. Kurakin, M. Kuhn, A. Dordic, M. Hall, K. Faber, Eur. J. Org. Chem. 2016, 3473-3477.
Y. Qiu, C. Tittiger, C. Wicker-Thomas, G. Le Goff, S. Young, E. Wajnberg, T. Fricaux, N. Taquet, G. J. Blomquist, R. Feyereisen, Proc. Natl. Acad. Sci. USA 2012, 109, 14858-14863.
A. Schirmer, M. A. Rude, X. Li, E. Popova, S. B. del Cardayre, Science 2010, 329, 559-562.
Z. Rui, N. C. Harris, X. Zhu, W. Huang, W. Zhang, ACS Catal. 2015, 5, 7091-7094.
P. Kallio, A. Pásztor, K. Thiel, M. K. Akhtar, P. R. Jones, Nat. Commun. 2014, 5, 4731.
M. A. Rude, T. S. Baron, S. Brubaker, M. Alibhai, S. B. del Cardayre, A. Schirmer, Appl. Environ. Microbiol. 2011, 77, 1718-1727.
C. Lu, F. Shen, S. Wang, Y. Wang, J. Liu, W.-J. Bai, X. Wang, ACS Catal. 2018, 8, 5794-5798.
A. Dennig, M. Kuhn, S. Tassoti, A. Thiessenhusen, S. Gilch, T. Bulter, T. Haas, M. Hall, K. Faber, Angew. Chem. Int. Ed. 2015, 54, 8819-8822;
Angew. Chem. 2015, 127, 8943-8946;
Angew. Chem. 2015, 127, 8943-8822;
Angew. Chem. Int. Ed. 2015, 54, 8819-8822.
J. L. Grant, C. H. Hsieh, T. M. Makris, J. Am. Chem. Soc. 2015, 137, 4940-4943.
J. L. Grant, M. E. Mitchell, T. M. Makris, Proc. Natl. Acad. Sci. USA 2016, 113, 10049-10054.
C. E. Wise, C. H. Hsieh, N. L. Poplin, T. M. Makris, ACS Catal. 2018, 8, 9342-9352.
A. W. Munro, K. J. McLean, J. L. Grant, T. M. Makris, Biochem. Soc. Trans. 2018, 46, 183-196.
S. Matthews, K. L. Tee, N. J. Rattray, K. J. McLean, D. Leys, D. A. Parker, R. T. Blankley, A. W. Munro, FEBS Lett. 2017, 591, 737-750.
I. Zachos, S. K. Gassmeyer, D. Bauer, V. Sieber, F. Hollmann, R. Kourist, Chem. Commun. 2015, 51, 1918-1921.
J. A. Amaya, C. D. Rutland, T. M. Makris, J. Inorg. Biochem. 2016, 158, 11-16.
L. Zhang, O. M. Manley, D. Ma, Y. Yin, T. M. Makris, Q. Wang, Bioresour. Technol. 2020, 311, 123538.
J. A. Amaya, Mechanisms of Decarboxylation In The CYP152 Family Of Cytochrome, University of South Carolina, 2018.
Y. Jiang, Z. Li, C. Wang, Y. J. Zhou, H. Xu, S. Li, Biotechnol. Biofuels 2019, 12, 79.
J. B. Wang, R. Lonsdale, M. T. Reetz, Chem. Commun. 2016, 52, 8131-8133.
C. H. Hsieh, X. Huang, J. A. Amaya, C. D. Rutland, C. L. Keys, J. T. Groves, R. N. Austin, T. M. Makris, Biochemistry 2017, 56, 3347-3357.
C. H. Hsieh, T. M. Makris, Biochem. Biophys. Res. Commun. 2016, 476, 462-466.
S. Matthews, J. D. Belcher, K. L. Tee, H. M. Girvan, K. J. McLean, S. E. J. Rigby, C. W. Levy, D. Leys, D. A. Parker, R. T. Blankley, A. W. Munro, J. Biol. Chem. 2017, 292, 5128-5143.
J. A. Amaya, C. D. Rutland, N. Leschinsky, T. M. Makris, Biochemistry 2018, 57, 344-353.
D. Ma, L. Zhang, Y. Yin, Q. Wang, Chin. Chem. Lett. 2021, https://doi.org/10.1016/j.cclet.2020.09.042.
D. Ma, L. Zhang, Y. Yin, Y. Gao, Q. Wang, J. Pharm. Anal. 2020, https://doi.org/10.1016/j.jpha.2020.12.004.
M. A. Hummel, P. M. Gannett, J. S. Aguilar, T. S. Tracy, Biochemistry 2004, 34, 7207-7214.
M. D. Cameron, B. Wen, A. G. Roberts, W. M. Atkins, A. P. Campbell, S. D. Nelson, Chem. Res. Toxicol. 2007, 20, 1434-1441.
N. Mast, P. Verwilst, C. J. Wilkey, F. P. Guengerich, I. A. Pikuleva, J. Med. Chem. 2020, 63, 6477-6488.
O. Shoji, Y. Aiba, Y. Watanabe, Acc. Chem. Res. 2019, 52, 925-934.
M. Wang, M. Baaden, J. Wang, Z. Liang, J. Chem. Inf. Model. 2014, 54, 1218-1225.
A. Luthra, I. G. Denisov, S. G. Sligar, Arch. Biochem. Biophys. 2011, 507, 26-35.
C. W. Locuson, J. M. Hutzler, T. S. Tracy, Drug Metab. Dispos. 2007, 35, 614-622.
S. Matthews, K. L. Tee, N. J. Rattray, K. J. McLean, D. Leys, D. A. Parker, R. T. Blankley, A. W. Munro, FEBS Lett. 2017, 591, 737-750.
O. Shoji, T. Kunimatsu, N. Kawakami, Y. Watanabe, Angew. Chem. Int. Ed. 2013, 52, 6606-6610;
Angew. Chem. 2013, 125, 6738-6742;
Angew. Chem. 2013, 125, 6738-6610;
Angew. Chem. Int. Ed. 2013, 52, 6606-6610.
W. Zhang, M. Ma, M. M. E. Huijbers, G. A. Filonenko, E. A. Pidko, M. van Schie, S. de Boer, B. O. Burek, J. Z. Bloh, W. J. H. van Berkel, W. A. Smith, F. Hollmann, J. Am. Chem. Soc. 2019, 141, 3116-3120.
N. Ma, Z. Chen, J. Chen, J. Chen, C. Wang, H. Zhou, L. Yao, O. Shoji, Y. Watanabe, Z. Cong, Angew. Chem. Int. Ed. 2018, 57, 7628-7633;
Angew. Chem. 2018, 130, 7754-7759;
Angew. Chem. 2018, 130, 7754-7633;
Angew. Chem. Int. Ed. 2018, 57, 7628-7633.

Auteurs

Libo Zhang (L)

Department of Chemistry and Biochemistry, University of South Carolina, 29205, Columbia, SC, USA.

Dumei Ma (D)

Department of Chemical and Biochemical Engineering, Xiamen University, Siming South Load 422, 361005, Xiamen, Fujian, P. R. China.

Yingwu Yin (Y)

Department of Chemical and Biochemical Engineering, Xiamen University, Siming South Load 422, 361005, Xiamen, Fujian, P. R. China.

Qian Wang (Q)

Department of Chemistry and Biochemistry, University of South Carolina, 29205, Columbia, SC, USA.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase

Classifications MeSH