Methylotrophs and Hydrocarbon-Degrading Bacteria Are Key Players in the Microbial Community of an Abandoned Century-Old Oil Exploration Well.
Cahuita National Park
Hydrocarbons
Methylobacillus
Methylococcus
Methylorubrum
Methylotrophic bacteria
Oil well
Paracoccus
Pseudomonas
Journal
Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
02
09
2020
accepted:
02
04
2021
pubmed:
18
4
2021
medline:
3
3
2022
entrez:
17
4
2021
Statut:
ppublish
Résumé
In this work, we studied the microbial community and the physicochemical conditions prevailing in an exploratory oil well, abandoned a century ago, located in the Cahuita National Park (Costa Rica). According to our analysis, Cahuita well is characterized by a continuous efflux of methane and the presence of a mixture of hydrocarbons including phenanthrene/anthracene, fluoranthene, pyrene, dibenzothiophene, tricyclic terpanes, pyrene, sesquiterpenes, sterane, and n-alkanes. Based on the analysis of 16S rRNA gene amplicons, we detected a significant abundance of methylotrophic bacteria such as Methylobacillus (6.3-26.0% of total reads) and Methylococcus (4.1-30.6%) and the presence of common genera associated with hydrocarbon degradation, such as Comamonas (0.8-4.6%), Hydrogenophaga (1.5-3.3%) Rhodobacter (1.0-4.9%), and Flavobacterium (1.1-6.5%). The importance of C1 metabolism in this niche was confirmed by amplifying the methane monooxygenase (MMO)-encoding gene (pmo) from environmental DNA and the isolation of two strains closely related to Methylorubrum rhodesianum and Paracoccus communis with the ability to growth using methanol and formate as sole carbon source respectively. In addition, we were able to isolated 20 bacterial strains from the genera Pseudomonas, Acinetobacter, and Microbacterium which showed the capability to grow using the hydrocarbons detected in the oil well as sole carbon source. This work describes the physicochemical properties and microbiota of an environment exposed to hydrocarbons for 100 years, and it not only represents a contribution to the understanding of microbial communities in environments with permanently high concentrations of these compounds but also has biotechnological implications for bioremediation of petroleum-polluted sites.
Identifiants
pubmed: 33864491
doi: 10.1007/s00248-021-01748-1
pii: 10.1007/s00248-021-01748-1
doi:
Substances chimiques
Hydrocarbons
0
Petroleum
0
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
83-99Subventions
Organisme : Vicerrectoría de Investigación, Universidad de Costa Rica
ID : 809-B8-518
Organisme : Chilean government
ID : ANID PIA/Anillo ACT172128, ANID PIA/BASAL FB0002 and FONDECYT 1201741.
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473. https://doi.org/10.1111/j.1574-6976.1998.tb00381.x
doi: 10.1111/j.1574-6976.1998.tb00381.x
Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) Comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699. https://doi.org/10.1007/s12010-015-1603-5
doi: 10.1007/s12010-015-1603-5
pubmed: 25935219
Ramos JL, Cuenca MS, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566. https://doi.org/10.1093/femsre/fuv006
doi: 10.1093/femsre/fuv006
pubmed: 25934123
Brzeszcz J, Kaszycki P (2018) Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 29:359–407. https://doi.org/10.1007/s10532-018-9837-x
doi: 10.1007/s10532-018-9837-x
pubmed: 29948519
Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252. https://doi.org/10.1016/S0958-1669(02)00316-6
doi: 10.1016/S0958-1669(02)00316-6
pubmed: 12180101
Agulló L, Pieper DH, Seeger M (2017) Genetics and biochemistry of biphenyl and PCB biodegradation. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham, pp 1–28
Krell T, Lacal J, Guazzaroni ME, Busch A, Silva-Jiménez H, Fillet S, Reyes-Darías JA, Muñoz-Martínez F, Rico-Jiménez M, García-Fontana C, Duque E, Segura A, Ramos JL (2012) Responses of Pseudomonas putida to toxic aromatic carbon sources. J Biotechnol 160:25–32. https://doi.org/10.1016/j.jbiotec.2012.01.026
doi: 10.1016/j.jbiotec.2012.01.026
pubmed: 22321573
Van der Meer JR, de Vos WM, Harayama S, Zehnder AJ (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694
doi: 10.1128/mr.56.4.677-694.1992
Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol 9:e2885. https://doi.org/10.3389/fmicb.2018.02885
doi: 10.3389/fmicb.2018.02885
Stapleton R, Bright N, Sayler G (2000) Diversity of degradative bacteria from fuel-hydrocarbon contaminated aquifers. Microb Ecol 39:211–221. https://doi.org/10.1007/s002480000002
doi: 10.1007/s002480000002
pubmed: 12035098
Imperato V, Portillo-Estrada M, McAmmond BM, Douwen Y, Van Hamme JD, Gawronski SW, Vangronsveld J, Thijs S (2019) Genomic diversity of two hydrocarbon-degrading and plant growth-promoting Pseudomonas species isolated from the oil Field of Bóbrka (Poland). Genes 10(6):e443. https://doi.org/10.3390/genes10060443
doi: 10.3390/genes10060443
pubmed: 31212674
Palleroni NJ, Pieper DH, Moore ERB (2010) Microbiology of hydrocarbon-degrading Pseudomonas. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin. https://doi.org/10.1007/978-3-540-77587-4_129
doi: 10.1007/978-3-540-77587-4_129
Nikel PI, Chavarría M, Danchin A, de Lorenzo V (2016) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Biotechnol 34:20–29. https://doi.org/10.1016/j.cbpa.2016.05.011
doi: 10.1016/j.cbpa.2016.05.011
Harner NK, Richardson TL, Thompson KA, , Best RJ, Best AS, Trevors JT (2011) Microbial processes in the Athabasca oil sands and their potential applications in microbial enhanced oil recovery. J Ind Microbiol Biotechnol 38:e1761. https://doi.org/10.1007/s10295-011-1024-6
doi: 10.1007/s10295-011-1024-6
Ridley CM, Voordouw G (2018) Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands. FEMS Microbiol Ecol 94:e6. https://doi.org/10.1093/femsec/fiy073
doi: 10.1093/femsec/fiy073
Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Sherry A, Swainsbury R, Voordouw G, Voordouw JK, Head IM (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404. https://doi.org/10.1111/j.1462-2920.2011.02521.x
doi: 10.1111/j.1462-2920.2011.02521.x
pubmed: 21824242
pmcid: 3490369
Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155. https://doi.org/10.1016/j.femsec.2004.11.007
doi: 10.1016/j.femsec.2004.11.007
pubmed: 16329936
Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high Arctic soils. PLoS One 7(1):e30058. https://doi.org/10.1371/journal.pone.0030058
doi: 10.1371/journal.pone.0030058
pubmed: 22253877
pmcid: 3256217
Sampaio DS, Almeida JRB, de Jesus HE, Rosado AS, Seldin L, Jurelevicius D (2017) Distribution of anaerobic hydrocarbon-degrading bacteria in soils from King George Island, maritime Antarctica. Microb Ecol 74:810–820. https://doi.org/10.1007/s00248-017-0973-3
doi: 10.1007/s00248-017-0973-3
pubmed: 28484799
Bell T, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW (2013) Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J 7:1200–1210. https://doi.org/10.1038/ismej.2013.1
doi: 10.1038/ismej.2013.1
pubmed: 23389106
pmcid: 3660676
Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52:523–532. https://doi.org/10.1007/s00248-006-9131-z
doi: 10.1007/s00248-006-9131-z
pubmed: 16944337
Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188. https://doi.org/10.1007/s003000050025
doi: 10.1007/s003000050025
Bornemann M, Bussmann I, Tichy L, Deutzmann J, Schink B, Pester M (2016) Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance. FEMS Microbiol Ecol 92:efiw123. https://doi.org/10.1093/femsec/fiw123
doi: 10.1093/femsec/fiw123
Sun W, Liu X, Chen X (2019) Methane oxidizing bacteria and its potential application of methane emission control in landfills. In: Zhan L, Chen Y, Bouazza A (eds) Proceedings of the 8th International Congress on Environmental Geotechnics. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2227-3_44
doi: 10.1007/978-981-13-2227-3_44
Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R, Rodriguez-Valera F (2019) Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr 65:1471–1488. https://doi.org/10.1002/lno.11401
doi: 10.1002/lno.11401
Vigneron A, Alsop EB, Cruaud P, Philibert G, King B, Baksmaty L, Lavallée D, Lomans BP, Kyrpides NC, Head IM, Tsesmetzis N (2017) Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. Sci Rep 7:e16015. https://doi.org/10.1038/s41598-017-16375-5
doi: 10.1038/s41598-017-16375-5
Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res Part II Top. Stud Oceanogr 57:2008–2021. https://doi.org/10.1016/j.dsr2.2010.05.014
doi: 10.1016/j.dsr2.2010.05.014
Orcutt BN, Samarkin V, Boetius A, Joye S (2008) On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ Microbiol 10:1108–1111. https://doi.org/10.1111/j.1462-2920.2007.01526.x
doi: 10.1111/j.1462-2920.2007.01526.x
pubmed: 18218032
Pizarro AD (1993) Los pozos profundos perforados en Costa Rica: Aspectos litologicos y bioestratigraficos. Revista Geológica de América Central 15:81–85. https://doi.org/10.15517/RGAC.V0I15.13240
doi: 10.15517/RGAC.V0I15.13240
Castillo R (1975) Sinopsis histórica sobre las exploraciones petroleras en Costa Rica. Revista de Ia Universidad de Costa Rica 41:47–62
APHA (2017) Standard methods for the examination of wastewater23rd edn. American Public Health Association, Washington DC
European Normalization Committee (2009) Oil spill identification — waterborne petroleum and petroleum products — part 2: analytical methodology and interpretation of results based on GC-FID and GC-MS low resolution analyses. S.R. CEN/TR 15522-2:2012
Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E, Rojas L, Cambronero JC, Pieper DH, Timmis KN, Chavarría M (2017) Pristine but metal-rich Río Sucio (Dirty River) is dominated by Gallionella and other iron-sulfur oxidizing microbes. Extremophiles 21:235–243. https://doi.org/10.1007/s00792-016-0898-7
doi: 10.1007/s00792-016-0898-7
pubmed: 27933457
Caporaso JG, Lauber C.L, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2010) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516-4522. https://doi.org/10.1073/pnas.1000080107
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
doi: 10.1038/nmeth.3869
pubmed: 27214047
pmcid: 27214047
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219
doi: 10.1093/nar/gks1219
R-Core-Team (2019) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Retrieved from https://www.r-project.org/
Oksanen J, Blanchet FG, Friendly M et al (2019) Vegan: community ecology package. R package version 2:5–6 Retrieved from https://cran.r-project.org/package=vegan
Ghashghavi M, Jetten M, Lüke C (2017) Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express 7(1):e162. https://doi.org/10.1186/s13568-017-0466-2
doi: 10.1186/s13568-017-0466-2
Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530. https://doi.org/10.1099/00221287-148-11-3521
doi: 10.1099/00221287-148-11-3521
pubmed: 12427943
Dorn E, Hellwig M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate-degrading Pseudomonad. Arch Microbiol 99:61–70
doi: 10.1007/BF00696222
Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
doi: 10.1128/aem.49.1.1-7.1985
Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol. 41:653–673. https://doi.org/10.1128/JB.41.5.653-673.1941
doi: 10.1128/JB.41.5.653-673.1941
pubmed: 16560430
pmcid: 374727
Anderson KL, Lebepe-Mazur S (2003) Comparison of rapid methods for the extraction of bacterial DNA from colonic and caecal lumen contents of the pig. J Appl Microbiol 94(6):988–993. https://doi.org/10.1046/j.1365-2672.2003
doi: 10.1046/j.1365-2672.2003
pubmed: 12752806
Mao D, Zhou Q, Chen C, Quan ZX (2012) Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiol 12:e66. https://doi.org/10.1186/1471-2180-12-66
doi: 10.1186/1471-2180-12-66
Edgar RC, Drive RM, Valley M (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340
doi: 10.1093/nar/gkh340
pubmed: 15034147
pmcid: 15034147
Tamura K, Stecher G, Peterson D, Filipski K, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197
doi: 10.1093/molbev/mst197
pubmed: 24132122
pmcid: 3840312
Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual3rd edn. Cold Spring Harbor
Vandermeer J (2010) How populations grow: the exponential and logistic equations. Nature Education Knowledge 3(10):e15
Tyson R, Pearson T (1991) Modern and ancient continental shelf anoxia: an overview. Geological Society, London, Special Publications 58:1–24. https://doi.org/10.1144/GSL.SP.1991.058.01.01
doi: 10.1144/GSL.SP.1991.058.01.01
Silver M, Knöller K, Schlögl J, Kübeck C, Schüth C (2018) Nitrogen cycling and origin of ammonium during infiltration of treated wastewater for managed aquifer recharge. App Geochem 97:71–80. https://doi.org/10.1016/j.apgeochem.2018.08.003
doi: 10.1016/j.apgeochem.2018.08.003
La Gaceta. (2005) Decreto No 32327-S El Presidente de la República y la Ministra de Salud. Retrieved from: https://www.ministeriodesalud.go.cr/gestores_en_salud/comision_agua_segura/legislacion/CAS_reglamento_calidad_agua_potable.pdf Consulted in January 2021
Alvarez RA, Zavala-Araiza D, Lyon DR, Allen DT, Barkley ZR, Brandt AR, Davis KJ, Herndon SC, Jacob DJ, Karion A, Kort EA, Lamb BK, Lauvaux T, Maasakkers JD, Marchese AJ, Omara M, Pacala SW, Peischl J, Robinson AL, Shepson PB, Sweeney C, Townsend-Small A, Wofsy SC, Hamburg SP (2018) Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361:186–188. https://doi.org/10.1126/science.aar7204
doi: 10.1126/science.aar7204
pubmed: 29930092
pmcid: 6223263
Zavala-Araiza D, Lyon DR, Alvarez RA, Davis KJ, Harriss R, Herndon SC, Karion A, Kort EA, Lamb BK, Lan X, Marchese AJ, Pacala SW, Robinson AL, Shepson PB, Sweeney C, Talbot R, Townsend-Small A, Yacovitch TI, Zimmerle DJ, Hamburg SP (2015) Reconciling divergent estimates of oil and gas methane emissions. Proc Natl Acad Sci USA 112:15597–15602. https://doi.org/10.1073/pnas.1522126112
doi: 10.1073/pnas.1522126112
pubmed: 26644584
pmcid: 4697433
Instituto Metereologico Nacional de Costa Rica (2019) Tablas de mareas. https://www.imn.ac.cr/tablas-de-mareas . Accessed 2 February 2021
Lin C, Chen S, Huang K, Lee W, Lin W, Tsai J, Chaung H (2008) PAHs, PAH-induced carcinogenic potency, and particle-extract-induced cytotoxicity of traffic-related nano/ultrafine particles. Environ Sci Technol 42:4229–4235. https://doi.org/10.1021/es703107w
doi: 10.1021/es703107w
pubmed: 18589992
Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E (2019) Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules 24:e3400. https://doi.org/10.3390/molecules24183400
doi: 10.3390/molecules24183400
pubmed: 31546774
Kim TJ, Lee EY, Kim YJ, Ryu HW (2003) Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J Microb Biot 19:411–417. https://doi.org/10.1023/A:1023998719787
doi: 10.1023/A:1023998719787
Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23:1149–1159. https://doi.org/10.1007/s11274-007-9345-3
doi: 10.1007/s11274-007-9345-3
Pujalte J, Lucena T (2014) The family rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer, Berlin. https://doi.org/10.1007/978-3-642-30197-1_377
Aburto A, Peimbert M (2011) Degradation of a benzene–toluene mixture by hydrocarbon adapted bacterial communities. Ann Microbiol 61:553–562. https://doi.org/10.1007/s13213-010-0173-6
doi: 10.1007/s13213-010-0173-6
pubmed: 21949494
Han X, Liu Y, Zheng Y (2014) Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area. Environ Sci Pollut Res 21:9754–9763. https://doi.org/10.1007/s11356-014-2928-2
doi: 10.1007/s11356-014-2928-2
Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9(7):e101438. https://doi.org/10.1371/journal.pone.0101438
doi: 10.1371/journal.pone.0101438
pubmed: 25007154
pmcid: 4090153
Mantri S, Chinthalagiri MR, Gundlapally SR (2016) Description of Hydrogenophaga laconesensis sp. nov. isolated from tube well water. Arch Microbiol 198:637–644. https://doi.org/10.1007/s00203-016-1224-6
doi: 10.1007/s00203-016-1224-6
pubmed: 27105873
Yang D, Cha S, Choi J, Seo T (2017) Hydrogenophaga soli sp. nov., isolated from rice field soil. Int J Syst Evol Microbiol 67:4200–4204. https://doi.org/10.1099/ijsem.0.002277
doi: 10.1099/ijsem.0.002277
pubmed: 28920826
Zhang J, Wang Y, Zhou S, Wu C, He J, Li F (2013) Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. Int J Syst Evol Microbiol 63:809–814. https://doi.org/10.1099/ijs.0.040188-0
doi: 10.1099/ijs.0.040188-0
pubmed: 22581903
Willems A, De Vos P (2006) Comamonas. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York. https://doi.org/10.1007/0-387-30745-1_31
doi: 10.1007/0-387-30745-1_31
Hu G, Zhang J, Yang G, Li YY, Guan YT, Wang J, Li SP, Hong Q (2013) Flavobacterium yanchengense sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:2848–2852. https://doi.org/10.1099/ijs.0.048801-0
doi: 10.1099/ijs.0.048801-0
pubmed: 23315414
Patil KS, Padakandla SR, Chae JC (2018) Flavobacterium amnigenum sp. nov. isolated from a river. J Microbiol Biotechnol 28:1536–1541. https://doi.org/10.4014/jmb.1806.06044
doi: 10.4014/jmb.1806.06044
pubmed: 30111073
Parales RE (2010) Hydrocarbon degradation by Betaproteobacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin. https://doi.org/10.1007/978-3-540-77587-4_121
doi: 10.1007/978-3-540-77587-4_121
Lin SY, Hameed A, Wen CZ, Hsu YH, Liu YC, Lai WA, Young CC (2017) Hydrogenophaga aquatica sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 67:3716–3721. https://doi.org/10.1099/ijsem.0.002146
doi: 10.1099/ijsem.0.002146
pubmed: 28901905
Fan X, Nie L, Shi K, Wang Q, Xia X, Wang G (2019) Simultaneous 3-/4-hydroxybenzoates biodegradation and arsenite oxidation by Hydrogenophaga sp. H7. Front Microbiol 10:e1346. https://doi.org/10.3389/fmicb.2019.01346
doi: 10.3389/fmicb.2019.01346
Goyal AK, Zylstra GJ (1997) Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J Ind Microbiol Biotechnol 19:401–407. https://doi.org/10.1038/sj.jim.2900476
doi: 10.1038/sj.jim.2900476
pubmed: 9451837
Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms. 3:137–151. https://doi.org/10.3390/microorganisms3020137
doi: 10.3390/microorganisms3020137
pubmed: 27682083
pmcid: 5023238
Wang P, Wang F, Xu M, Xiao X (2004) Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific Warm Pool. FEMS Microbiol Ecol 47:77–84. https://doi.org/10.1016/S0168-6496(03)00252-6
doi: 10.1016/S0168-6496(03)00252-6
pubmed: 19712348
Orcutt B, Samarkin V, Boetius A, Joye S (2008) On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ Microbiol 10:1108–1117. https://doi.org/10.1111/j.1462-2920.2007.01526.x
doi: 10.1111/j.1462-2920.2007.01526.x
pubmed: 18218032
Sharp CE, Azucena Martínez-Lorenzo A, Brady AL, Grasby SE, Dunfield PF (2014) Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing. FEMS Microbiol Ecol 90:92–102. https://doi.org/10.1111/1574-6941.12375
doi: 10.1111/1574-6941.12375
pubmed: 24986354
Gałązka A, Grządziel J, Gałązka R, Ukalska-Jaruga A, Strzelecka J, Smreczak B (2018) Genetic and functional diversity of bacterial microbiome in soils with long term impacts of petroleum hydrocarbons. Front Microbiol 9:e1923. https://doi.org/10.3389/fmicb.2018.01923
doi: 10.3389/fmicb.2018.01923
Whittenbury R, Dalton H (1981) The methylotrophic bacteria. In: Starr MP, Stolp H, Trüper HG et al (eds) The prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_71
doi: 10.1007/978-3-662-13187-9_71
Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294. https://doi.org/10.1021/acs.biochem.5b00198
doi: 10.1021/acs.biochem.5b00198
pubmed: 25806595
Patel RN, Hou CT, Laskin AI, Felix A (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl Environ Microbiol 44:1130–1137. https://doi.org/10.1128/AEM.44.5.1130-1137.1982
doi: 10.1128/AEM.44.5.1130-1137.1982
pubmed: 16346133
pmcid: 242158
Lee S, Keeney DR, Lim D, Dispirito A, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72:7503–7509. https://doi.org/10.1128/AEM.01604-06
doi: 10.1128/AEM.01604-06
pubmed: 17012599
pmcid: 1694253
Semrau JD (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:e209. https://doi.org/10.3389/fmicb.2011.00209
doi: 10.3389/fmicb.2011.00209
Singh JS, Singh DP (2017) Methanotrophs: An emerging bioremediation tool with unique broad spectrum methane monooxygenase (MMO) enzyme. In: Singh J, Seneviratne G (eds) Agro-environmental sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-31
doi: 10.1007/978-3-319-49727-31
Doronina N, Kaparullina E, Trotsenko Y (2014) The family methylophilaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer, Berlin, Heidelberg, pp 869–880
doi: 10.1007/978-3-642-30197-1_243
Lu C, Hong Y, Liu J, Gao Y, Ma Z, Yang B, Ling W, Waigi MG (2019) A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ Pollut 251:773–782. https://doi.org/10.1016/j.envpol.2019.05.044
doi: 10.1016/j.envpol.2019.05.044
pubmed: 31121542
Govorukhina NI, Kletsova LV, Tsygankov YD, Trotsenko YA, Netrusov AI (1987) Characteristics of a new obligate methylotroph. Microbiology 56:673–677
Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA (2011) Methylobacillus arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented obligately methylotrophic bacteria associated with plants. Syst Appl Microbiol 34:477–481. https://doi.org/10.1016/j.syapm.2011.03.005
doi: 10.1016/j.syapm.2011.03.005
pubmed: 21640537
Bowman JP (2014) The family Methylococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin. https://doi.org/10.1007/978-3-642-38922-1_237
doi: 10.1007/978-3-642-38922-1_237
Piccardi P, Vessman B, Mitri S (2019) Toxicity drives facilitation between 4 bacterial species. Proc Natl Acad Sci USA 116:15979–15984. https://doi.org/10.1073/pnas.1906172116
doi: 10.1073/pnas.1906172116
pubmed: 31270235
pmcid: 6690002
Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK (2014) Assessment of the deep water horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 5:e130. https://doi.org/10.3389/fmicb.2014.00130
doi: 10.3389/fmicb.2014.00130
Yamane K, Hattori Y, Ohtagaki H, Fujiwara K (2011) Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74 and 98°C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol 76:220–235. https://doi.org/10.1111/j.1574-6941.2011.01044.x
doi: 10.1111/j.1574-6941.2011.01044.x
pubmed: 21223337
van de Kamp J, Hook SE, Williams A, Tanner JE, Bodrossy L (2019) Baseline characterization of aerobic hydrocarbon degrading microbial communities in deep-sea sediments of the Great Australian Bight, Australia. Environ Microbiol 21:1782–1797. https://doi.org/10.1111/1462-2920.14559
doi: 10.1111/1462-2920.14559
pubmed: 30761716
Sun X, Kostka JE (2019) Hydrocarbon-degrading microbial communities are site specific, and their activity is limited by synergies in temperature and nutrient availability in surface ocean waters. Appl Environ Microbiol 85:e00443–e00419. https://doi.org/10.1128/AEM.00443-19
doi: 10.1128/AEM.00443-19
pubmed: 31126938
pmcid: 6643229
Green PN, Ardley J (2018) Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 68:2727–2748. https://doi.org/10.1099/ijsem.0.002856
doi: 10.1099/ijsem.0.002856
pubmed: 30024371
Green PN, Bousfield IJ, Hood D (1988) Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int J Syst Bacteriol 38:124–127. https://doi.org/10.1099/00207713-38-1-124
doi: 10.1099/00207713-38-1-124
Dziewit L, Czarnecki J, Prochwicz E, Wibberg D, Schlüter A, Pühler A, Bartosik D (2015) Genome-guided insight into the methylotrophy of Paracoccus aminophilus JCM 7686. Front Microbiol 6:e852. https://doi.org/10.3389/fmicb.2015.00852
doi: 10.3389/fmicb.2015.00852
Bamforth CW, Quayle JR (1978) Aerobic and anaerobic growth of Paracoccus denitrificans on methanol. Arch Microbiol 119:91–97. https://doi.org/10.1007/BF00407934
doi: 10.1007/BF00407934
pubmed: 718372
Mineki S, Fukutome N, Oinuma N, Nagashima H, Iida M (1997) Synthesis and characterization of polyesters produced by Paracoccus sp. 12-A from formic acid. Macromolecules 30:319–321. https://doi.org/10.1021/ma961061d
doi: 10.1021/ma961061d
Shinoda T, Satoh T, Mineki S, Iida M, Taguchi H (2002) Cloning, nucleotide sequencing, and expression in Escherichia coli of the gene for formate dehydrogenase of Paracoccus sp. 12-A, a formate-assimilating bacterium. Biosci. Biotechnol. Biochem. 66:271–276. https://doi.org/10.1271/bbb.66.271
doi: 10.1271/bbb.66.271
pubmed: 11999398
Ghosh I, Jasmine J, Mukherji S (2014) Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge. Bioresour Technol 166:548–558. https://doi.org/10.1016/j.biortech.2014.05.074
doi: 10.1016/j.biortech.2014.05.074
pubmed: 24951942
Li L, Shen X, Zhao C, Liu Q, Liu X, Wu Y (2019) Biodegradation of dibenzothiophene by efficient Pseudomonas sp. LKY-5 with the production of a biosurfactant. Ecotoxicol Environ Saf 176:50–57. https://doi.org/10.1016/j.ecoenv.2019.03.070
doi: 10.1016/j.ecoenv.2019.03.070
pubmed: 30921696
Belhaj A, Desnoues N, Elmerich C (2002) Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Res Microbiol 153:339–344. https://doi.org/10.1016/s0923-2508(02)01333-5
doi: 10.1016/s0923-2508(02)01333-5
pubmed: 12234007
Wu T, Xu J, Xie W, Yao Z, Yang H, Sun C, Li X (2018) Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front Microbiol 9:e1087. https://doi.org/10.3389/fmicb.2018.01087
doi: 10.3389/fmicb.2018.01087
Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V (2013) The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15:1772–1785. https://doi.org/10.1111/1462-2920.12069
doi: 10.1111/1462-2920.12069
pubmed: 23301697
Nikel PI, Fuhrer T, Chavarría M, Sánchez-Pascuala A, Sauer U, de Lorenzo V (2021) Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. ISME J. https://doi.org/10.1038/s41396-020-00884-9
Overholt WA, Green SJ, Marks KP, Venkatraman R, Prakash O, Kostka JE (2013) Draft genome sequences for oil-degrading bacterial strains from beach sands impacted by the deep water horizon oil spill. Genome Announc 1(6):e01015–e01013. https://doi.org/10.1128/genomeA.01015-13
doi: 10.1128/genomeA.01015-13
pubmed: 24356826
pmcid: 3868850
Sheng XF, He LY, Zhou L, Shen YY (2009) Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can J Microbiol 55:529–535. https://doi.org/10.1139/w09-005
doi: 10.1139/w09-005
pubmed: 19483781
Wang H, Xiang T, Wang Y, Song J, Zhai Y, Chen X, Li Y, Zhao B, Zhao B, Ruan Z (2014) Microbacterium petrolearium sp. nov., isolated from an oil-contaminated water sample. Int J Syst Evol Microbiol 64:4168–4172. https://doi.org/10.1099/ijs.0.061119-0
doi: 10.1099/ijs.0.061119-0
pubmed: 25253073
Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2011) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci USA 109:20286–20291. https://doi.org/10.1073/pnas.1108820109
doi: 10.1073/pnas.1108820109
Kumar BNV, Guo S, Bocklitz T, Rösch P, Popp J (2016) Demonstration of carbon catabolite repression in naphthalene degrading soil bacteria via raman spectroscopy based stable isotope probing. Anal Chem 88:7574–7582. https://doi.org/10.1021/acs.analchem.6b01046
doi: 10.1021/acs.analchem.6b01046