Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences.
PAM
adenine base editing
cytosine base editing
iSpyMacCas9
plant genome editing
Journal
Plant communications
ISSN: 2590-3462
Titre abrégé: Plant Commun
Pays: China
ID NLM: 101769147
Informations de publication
Date de publication:
08 03 2021
08 03 2021
Historique:
received:
05
06
2020
revised:
12
07
2020
accepted:
20
07
2020
entrez:
26
4
2021
pubmed:
27
4
2021
medline:
27
4
2021
Statut:
epublish
Résumé
The most popular CRISPR-SpCas9 system recognizes canonical NGG protospacer adjacent motifs (PAMs). Previously engineered SpCas9 variants, such as Cas9-NG, favor G-rich PAMs in genome editing. In this manuscript, we describe a new plant genome-editing system based on a hybrid iSpyMacCas9 platform that allows for targeted mutagenesis, C to T base editing, and A to G base editing at A-rich PAMs. This study fills a major technology gap in the CRISPR-Cas9 system for editing NAAR PAMs in plants, which greatly expands the targeting scope of CRISPR-Cas9. Finally, our vector systems are fully compatible with Gateway cloning and will work with all existing single-guide RNA expression systems, facilitating easy adoption of the systems by others. We anticipate that more tools, such as prime editing, homology-directed repair, CRISPR interference, and CRISPR activation, will be further developed based on our promising iSpyMacCas9 platform.
Identifiants
pubmed: 33898973
doi: 10.1016/j.xplc.2020.100101
pii: S2590-3462(20)30129-2
pmc: PMC8060698
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Pagination
100101Informations de copyright
© 2020 The Authors.
Références
Plant Biotechnol J. 2015 May;13(4):578-89
pubmed: 25400128
Nat Plants. 2018 Jul;4(7):427-431
pubmed: 29867128
Sci Rep. 2016 May 26;6:26871
pubmed: 27226350
Mol Plant. 2019 Jul 1;12(7):1015-1026
pubmed: 30928635
Mol Plant. 2020 May 4;13(5):667-670
pubmed: 32222487
Plant Biotechnol J. 2020 Jun;18(6):1348-1350
pubmed: 31696609
Nature. 2018 Apr 5;556(7699):57-63
pubmed: 29512652
Nature. 2017 Nov 23;551(7681):464-471
pubmed: 29160308
Genome Biol. 2018 May 29;19(1):59
pubmed: 29807545
Biochem J. 2018 Jun 11;475(11):1955-1964
pubmed: 29891532
Plant Biotechnol J. 2020 Mar;18(3):770-778
pubmed: 31469505
Nat Biotechnol. 2013 Aug;31(8):688-91
pubmed: 23929339
Nat Plants. 2019 Jan;5(1):14-17
pubmed: 30531939
Mol Plant. 2018 Jul 2;11(7):999-1002
pubmed: 29567452
Nature. 2015 Apr 9;520(7546):186-91
pubmed: 25830891
Cell Discov. 2019 Dec 3;5:58
pubmed: 31814995
Sci China Life Sci. 2017 May;60(5):516-519
pubmed: 28260228
Mol Plant. 2019 Jul 1;12(7):1003-1014
pubmed: 30928636
Nat Plants. 2017 Dec;3(12):930-936
pubmed: 29158545
Mol Plant. 2018 Apr 2;11(4):631-634
pubmed: 29476918
Trends Biotechnol. 2019 Oct;37(10):1121-1142
pubmed: 30995964
Mol Plant. 2016 Jun 6;9(6):943-5
pubmed: 26995294
Plant Cell Physiol. 2017 Apr 1;58(4):643-649
pubmed: 28371831
Plant Biotechnol J. 2020 Nov;18(11):2167-2169
pubmed: 32372479
Nat Plants. 2017 Feb 17;3:17018
pubmed: 28211909
Mol Plant. 2020 May 4;13(5):675-678
pubmed: 32234340
Methods Mol Biol. 2017;1578:291-307
pubmed: 28220435
Plant Biotechnol J. 2019 Jul;17(7):1431-1445
pubmed: 30582653
Mol Plant. 2017 Mar 6;10(3):526-529
pubmed: 27940306
BMC Bioinformatics. 2018 Dec 27;19(1):542
pubmed: 30587106
Plant Biotechnol J. 2018 Jan;16(1):292-297
pubmed: 28605576
Nat Biotechnol. 2018 Oct;36(9):843-846
pubmed: 29813047
Science. 2018 Sep 21;361(6408):1259-1262
pubmed: 30166441
Plant Physiol. 2015 Oct;169(2):971-85
pubmed: 26297141
Nat Biotechnol. 2019 Nov;37(11):1344-1350
pubmed: 31659337
Nature. 2015 Jul 23;523(7561):481-5
pubmed: 26098369
Mol Plant. 2018 Feb 5;11(2):245-256
pubmed: 29197638
Nat Biotechnol. 2018 Oct 01;:
pubmed: 30272679
Cell. 2017 Oct 5;171(2):470-480.e8
pubmed: 28919077
J Genet Genomics. 2019 May 20;46(5):277-280
pubmed: 31054950
J Exp Bot. 2005 Jan;56(409):1-14
pubmed: 15557293
Plant Biotechnol J. 2019 Oct;17(10):1865-1867
pubmed: 31070861
Mol Plant. 2019 Jul 1;12(7):1027-1036
pubmed: 30928637
Plant Physiol. 2011 Jul;156(3):1589-602
pubmed: 21596949
New Phytol. 2019 Apr;222(2):1139-1148
pubmed: 30565255
Nat Plants. 2019 Aug;5(8):778-794
pubmed: 31308503
Plant Biotechnol J. 2019 Aug;17(8):1476-1478
pubmed: 30959555
Nat Biotechnol. 2020 May;38(5):582-585
pubmed: 32393904
Nature. 2016 Apr 20;533(7603):420-4
pubmed: 27096365
Science. 2016 Sep 16;353(6305):
pubmed: 27492474
Front Plant Sci. 2017 Dec 12;8:2135
pubmed: 29312390
Nat Biotechnol. 2017 May;35(5):441-443
pubmed: 28346401
Plant Cell Physiol. 2004 Apr;45(4):490-5
pubmed: 15111724
Mol Ther. 2016 Mar;24(3):636-44
pubmed: 26658966
Nature. 2010 Nov 4;468(7320):67-71
pubmed: 21048762
Mol Plant. 2018 Apr 2;11(4):623-626
pubmed: 29382569
Nat Biotechnol. 2017 May;35(5):438-440
pubmed: 28244994
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Sci Rep. 2017 Dec 4;7(1):16836
pubmed: 29203891
Mol Plant. 2017 Mar 6;10(3):523-525
pubmed: 27932049
Sci China Life Sci. 2018 Nov;61(11):1293-1300
pubmed: 30267262
Mol Plant. 2020 May 4;13(5):671-674
pubmed: 32222486
Plant J. 2015 Dec;84(6):1295-305
pubmed: 26576927
Nat Commun. 2020 May 18;11(1):2474
pubmed: 32424114
BMC Plant Biol. 2014 Nov 29;14:327
pubmed: 25432517
Plant Commun. 2020 Apr 08;1(3):100043
pubmed: 33367239
Plant Biotechnol J. 2019 Apr;17(4):709-711
pubmed: 30549238