De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas.

Chlamydomonas incerta Chlamydomonas reinhardtii comparative mutability mutation accumulation mutation rate mutation spectrum

Journal

Molecular biology and evolution
ISSN: 1537-1719
Titre abrégé: Mol Biol Evol
Pays: United States
ID NLM: 8501455

Informations de publication

Date de publication:
23 08 2021
Historique:
pubmed: 6 5 2021
medline: 26 3 2022
entrez: 5 5 2021
Statut: ppublish

Résumé

De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is μ = 7.6 × 10-10, and is highly variable between MA lines, ranging from μ = 0.35 × 10-10 to μ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.

Identifiants

pubmed: 33950243
pii: 6265477
doi: 10.1093/molbev/msab140
pmc: PMC8383909
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3709-3723

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Références

Genome Biol Evol. 2016 Dec 1;8(12):3629-3639
pubmed: 27635054
Nature. 2012 Jul 18;487(7407):330-7
pubmed: 22810696
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Cell Mol Life Sci. 2016 Dec;73(23):4433-4448
pubmed: 27392606
Genetics. 2006 Mar;172(3):1567-76
pubmed: 16361241
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Nat Protoc. 2009;4(8):1184-91
pubmed: 19617889
Nat Genet. 2013 Sep;45(9):970-6
pubmed: 23852170
PLoS Biol. 2019 Jun 26;17(6):e3000192
pubmed: 31242179
Mol Biol Evol. 2016 Mar;33(3):800-8
pubmed: 26615203
Bioinformatics. 2017 Jun 15;33(12):1867-1869
pubmed: 28165109
J Stat Softw. 2010;33(1):1-22
pubmed: 20808728
Annu Rev Genet. 2018 Nov 23;52:397-419
pubmed: 30212236
Nucleic Acids Res. 2017 Feb 28;45(4):1889-1901
pubmed: 27994033
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W29-33
pubmed: 23609542
Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80
pubmed: 20451164
Genetics. 2012 Dec;192(4):1447-54
pubmed: 23051642
Mol Biol Evol. 2019 Mar 1;36(3):632-637
pubmed: 30517680
Genetics. 2020 Aug;215(4):1107-1116
pubmed: 32513815
Nat Genet. 2016 Apr;48(4):349-55
pubmed: 26878723
Genetics. 2019 Feb;211(2):703-714
pubmed: 30514707
Genome Biol Evol. 2012;4(4):513-22
pubmed: 22436997
Nat Commun. 2020 Jan 13;11(1):236
pubmed: 31932649
Trends Genet. 2002 Sep;18(9):486
pubmed: 12175810
Genome Res. 2018 Jan;28(1):66-74
pubmed: 29233924
Genome Res. 2009 Jul;19(7):1195-201
pubmed: 19439516
Bioinformatics. 2018 Jul 15;34(14):2503-2505
pubmed: 29522153
Genetics. 2012 Jan;190(1):5-22
pubmed: 22219506
Cell Rep. 2013 Jan 31;3(1):246-59
pubmed: 23318258
Genetics. 2019 Oct;213(2):361-378
pubmed: 31431471
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Heredity (Edinb). 2021 Jan;126(1):107-116
pubmed: 32868871
Curr Biol. 2019 May 20;29(10):1584-1591.e3
pubmed: 31056389
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44
pubmed: 23129619
Nat Genet. 2009 Apr;41(4):393-5
pubmed: 19287383
Plant Cell. 2021 May 31;33(4):1016-1041
pubmed: 33793842
Brief Bioinform. 2014 May;15(3):376-89
pubmed: 24058049
Science. 2007 Oct 12;318(5848):245-50
pubmed: 17932292
Mol Biol Evol. 2017 Jan;34(1):160-173
pubmed: 27777284
Bioinformatics. 2017 May 15;33(10):1581-1582
pubmed: 28093408
Genes Environ. 2016 Sep 01;38(1):17
pubmed: 27588157
Genome Res. 2015 Nov;25(11):1739-49
pubmed: 26260971
Mol Biol Evol. 2017 Jan;34(1):93-109
pubmed: 27744412
Mol Biol Evol. 2020 Nov 1;37(11):3258-3266
pubmed: 32520985
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2560-2569
pubmed: 31964835
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83
pubmed: 22991466
Mol Biol Evol. 2019 May 1;36(5):865-874
pubmed: 30753674
Mol Biol Evol. 2017 May 1;34(5):1100-1109
pubmed: 28138076
Genetics. 2012 Feb;190(2):295-304
pubmed: 22345605
Genome Biol Evol. 2019 Jan 1;11(1):136-165
pubmed: 30476040
Bioinformatics. 2020 Jan 15;36(2):393-399
pubmed: 31328780
Mol Biol Evol. 2020 Mar 1;37(3):893-903
pubmed: 31651955
Nature. 2011 Oct 12;478(7370):476-82
pubmed: 21993624
Evolution. 1999 Jun;53(3):645-663
pubmed: 28565627
Genome Biol Evol. 2011;3:1107-18
pubmed: 21821597
Genetics. 2005 Aug;170(4):1601-10
pubmed: 15956662
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92
pubmed: 23077252
Bioinformatics. 2011 Nov 1;27(21):2987-93
pubmed: 21903627
Microbiology (Reading). 2002 May;148(Pt 5):1247-1252
pubmed: 11988499
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E5990-9
pubmed: 26460006
Biophys Chem. 2017 Jun;225:38-48
pubmed: 27914716
Science. 2010 Jan 1;327(5961):92-4
pubmed: 20044577
PLoS Genet. 2010 Sep 09;6(9):e1001115
pubmed: 20838599
Fly (Austin). 2012 Apr-Jun;6(2):80-92
pubmed: 22728672
Trends Genet. 2010 Aug;26(8):345-52
pubmed: 20594608
J Biol Chem. 1988 Jan 25;263(3):1095-8
pubmed: 3275663
Curr Top Microbiol Immunol. 2013;371:1-27
pubmed: 23686230
Mol Ecol. 2018 Dec;27(24):4991-5003
pubmed: 30415505
J Biol Chem. 2004 Nov 12;279(46):47411-4
pubmed: 15326170
Front Biosci. 2008 Jan 01;13:1064-71
pubmed: 17981612
Nat Ecol Evol. 2018 Feb;2(2):237-240
pubmed: 29292397
Bioinformatics. 2009 Nov 1;25(21):2865-71
pubmed: 19561018
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
Mol Biol Evol. 2015 Jan;32(1):239-43
pubmed: 25371432
Evolution. 2014 Sep;68(9):2589-602
pubmed: 24826801
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2310-8
pubmed: 24847077
Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86
pubmed: 22110026
Genome Biol. 2011;12(2):R18
pubmed: 21338519
Science. 2011 May 20;332(6032):930-6
pubmed: 21511999
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10177-84
pubmed: 25814499
Nat Rev Genet. 2007 Aug;8(8):610-8
pubmed: 17637733
Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33
pubmed: 25431634
J Plant Res. 2010 Jan;123(1):67-78
pubmed: 19882207
Mol Biol Evol. 2017 Jul 1;34(7):1770-1779
pubmed: 28379581
Nucleic Acids Res. 2000 Jul 15;28(14):2794-9
pubmed: 10908337
PLoS Biol. 2003 Nov;1(2):E45
pubmed: 14624247
Nat Genet. 2017 Dec;49(12):1684-1692
pubmed: 29106418
Genetics. 2015 Oct;201(2):737-44
pubmed: 26265703
Science. 2003 Nov 21;302(5649):1401-4
pubmed: 14631042
Science. 2003 May 30;300(5624):1404-9
pubmed: 12775833
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Bioinformatics. 2005 Aug 15;21(16):3439-40
pubmed: 16082012
Genome Biol Evol. 2019 Jul 1;11(7):1829-1837
pubmed: 31218358
Evolution. 2017 Dec;71(12):2918-2929
pubmed: 28884790
Nat Rev Genet. 2007 Dec;8(12):973-82
pubmed: 17984973
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
J Am Chem Soc. 2017 Mar 15;139(10):3591-3594
pubmed: 28217994
Nat Rev Genet. 2016 Oct 14;17(11):704-714
pubmed: 27739533

Auteurs

Eugenio López-Cortegano (E)

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Rory J Craig (RJ)

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Jobran Chebib (J)

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Toby Samuels (T)

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Andrew D Morgan (AD)

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Susanne A Kraemer (SA)

Department of Biology, Concordia University, Montreal, QC, Canada.

Katharina B Böndel (KB)

Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany.

Rob W Ness (RW)

Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.

Nick Colegrave (N)

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Peter D Keightley (PD)

Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH