Genetic mapping of the early responses to salt stress in Arabidopsis thaliana.
Arabidopsis
genome-wide association studies
high-throughput phenotyping
multivariate analysis
salt stress
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
revised:
05
03
2021
received:
13
10
2020
accepted:
19
04
2021
pubmed:
9
5
2021
medline:
30
11
2021
entrez:
8
5
2021
Statut:
ppublish
Résumé
Salt stress decreases plant growth prior to significant ion accumulation in the shoot. However, the processes underlying this rapid reduction in growth are still unknown. To understand the changes in salt stress responses through time and at multiple physiological levels, examining different plant processes within a single set-up is required. Recent advances in phenotyping has allowed the image-based estimation of plant growth, morphology, colour and photosynthetic activity. In this study, we examined the salt stress-induced responses of 191 Arabidopsis accessions from 1 h to 7 days after treatment using high-throughput phenotyping. Multivariate analyses and machine learning algorithms identified that quantum yield measured in the light-adapted state (F
Banques de données
figshare
['10.6084/m9.figshare.12173382']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
544-563Informations de copyright
© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.
Références
1001 Genomes Consortium (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell, 166, 481-491.
Adem, G.D., Roy, S.J., Zhou, M., Bowman, J.P. & Shabala, S. (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biology, 14, 113.
Alexandratos, N. & Bruinsma, J. (2012) World agriculture towards 2030/2050: the 2012 revision. Available from http://www.fao.org/3/ap106e/ap106e.pdf [Accessed 20th May 2021].
Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y.S. et al. (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 7, 13342.
Awlia, M., Nigro, A., Fajkus, J., Schmoeckel, S.M., Negrão, S., Santelia, D. et al. (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Frontiers in Plant Science, 7, 1414.
Bassel, G.W., Fung, P., Chow, T.-F.-F., Foong, J.A., Provart, N.J. & Cutler, S.R. (2008) Elucidating the germination transcriptional program using small molecules. Plant Physiology, 147, 143-155.
Baxter, I., Brazelton, J.N., Yu, D., Huang, Y.S., Lahner, B., Yakubova, E. et al. (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genetics, 6, e1001193.
Butcher, K., Wick, A.F., DeSutter, T., Chatterjee, A. & Harmon, J. (2016) Soil salinity: a threat to global food security. Agronomy Journal, 108, 2189-2200.
Butler, D.G., Cullis, B.R., Gilmour, A.R. & Gogel, B.J. (2009) ASReml-R Reference Manual. Brisbane, Australia: Department of Primary Industries and Fisheries, The State of Queensland. Available from: https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/2018/02/ASReml-R-3-Reference-Manual.pdf [Accessed 20th May 2021].
Byrt, C.S., Munns, R., Burton, R.A., Gilliham, M. & Wege, S. (2018) Root cell wall solutions for crop plants in saline soils. Plant Science, 269, 47-55.
Campos, J.F., Cara, B., Pérez-Martín, F., Pineda, B., Egea, I., Flores, F.B. et al. (2016) The tomato mutant ars1 (altered response to salt stress) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Plant Biotechnology Journal, 14, 1345-1356.
Chen, T., He, T., Benesty, M., Khotilovich, V. & Tang, Y. (2018) xgboost: Extreme Gradient Boosting. R Package Version 0.6. 4.1. Available from: https://arxiv.org/pdf/1603.02754.pdf [Accessed 20th May 2021].
Choi, W.-G., Toyota, M., Kim, S.-H., Hilleary, R. & Gilroy, S. (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America, 111, 6497-6502.
Dabney, A., Storey, J.D. & Warnes, G.R. (2010) qvalue: q-value estimation for false discovery rate control. R package version. Available from: ftp://ftp.uni-bayreuth.de/pub/math/statlib/R/CRAN/src/contrib/Descriptions/qvalue.html [Accessed 1st May 2020].
Daliakopoulos, I.N., Tsanis, I.K., Koutroulis, A., Kourgialas, N.N., Varouchakis, A.E., Karatzas, G.P. et al. (2016) The threat of soil salinity: a European scale review. Science of the Total Environment, 573, 727-739.
Deolu-Ajayi, A.O., Meyer, A.J., Haring, M.A., Julkowska, M.M. & Testerink, C. (2019) Genetic loci associated with early salt stress responses of roots. iScience, 21, 458-473.
Edwards, K., Johnstone, C. & Thompson, C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.
Evans, M.J., Choi, W.-G., Gilroy, S. & Morris, R.J. (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiology, 171, 1771-1784.
Fahlgren, N., Gehan, M.A. & Baxter, I. (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, 24, 93-99.
Feng, W., Kita, D., Peaucelle, A., Cartwright, H.N., Doan, V., Duan, Q. et al. (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Current Biology, 28, 666-675.e5.
Fricke, W., Akhiyarova, G., Wei, W., Alexandersson, E., Miller, A., Kjellbom, P.O. et al. (2006) The short-term growth response to salt of the developing barley leaf. Journal of Experimental Botany, 57, 1079-1095.
Gao, G., Tester, M. & Julkowska, M.M. (2020) The use of high throughput phenotyping for assessment of heat stress-induced changes in Arabidopsis. Plant Phenomics, 2020, 3723916. https://doi.org/10.34133/2020/3723916
Gao, W., Xu, F.-C., Guo, D.-D., Zhao, J.-R., Liu, J.I., Guo, Y.-W. et al. (2018) Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biology, 18, 15.
Genc, Y., Mcdonald, G.K. & Tester, M. (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environment, 30, 1486-1498.
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F. et al. (2010) Food security: the challenge of feeding 9 billion people. Science, 327, 812-818.
Grinberg, N.F., Orhobor, O.I. & King, R.D. (2020) An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat. Machine Learning, 109, 251-277.
Gutiérrez, S., Tardaguila, J., Fernández-Novales, J. & Diago, M.P. (2016) Data mining and NIR spectroscopy in viticulture: applications for plant phenotyping under field conditions. Sensors, 16, 236.
Hardtke, C.S., Okamoto, H., Stoop-Myer, C. & Deng, X.W. (2002) Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant Journal, 30, 385-394.
Henley, W.J. (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. Journal of Phycology, 29(6), 729-739. https://doi.org/10.1111/j.0022-3646.1993.00729.x
Hofmann, K. & Stoffel, W. (1993) TMbase - a database of membrane spanning protein segments. Biological Chemistry Hoppe-Seyler, 374, 166.
Højsgaard, S., Halekoh, U., Robison-Cox, J., Wright, K. & Leidi, A.A. (2016) doBy: groupwise statistics, LSmeans, linear contrasts, utilities. R package version, 4, 15.
Hooper, C.M., Castleden, I.R., Tanz, S.K., Aryamanesh, N. & Millar, A.H. (2017) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45, D1064-D1074.
Hu, Y., Hackl, H. & Schmidhalter, U. (2017) Comparative performance of spectral and thermographic properties of plants and physiological traits for phenotyping salinity tolerance of wheat cultivars under simulated field conditions. Functional Plant Biology, 44(1), 134-https://doi.org/10.1071/FP16217
Humplík, J.F., Lazár, D., Husičková, A. & Spíchal, L. (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review. Plant Methods, 11(1), https://doi.org/10.1186/s13007-015-0072-8
James, R.A., Rivelli, A.R., Munns, R. & von Caemmerer, S. (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 29, 1393-1403.
Julkowska, M.M., Klei, K., Fokkens, L., Haring, M.A., Schranz, M.E. & Testerink, C. (2016) Natural variation in rosette size under salt stress conditions corresponds to developmental differences between Arabidopsis accessions and allelic variation in the LRR-KISS gene. Journal of Experimental Botany, 67, 2127-2138.
Julkowska, M.M., Koevoets, I.T., Mol, S., Hoefsloot, H., Feron, R., Tester, M.A. et al. (2017) Genetic components of root architecture remodeling in response to salt stress. The Plant Cell, 29, 3198-3213.
Kalaji, H.M., Govindjee, Bosa, K., Kościelniak, J. & Żuk-Gołaszewska, K. (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64-72.
Kassambara, A. & Mundt, F. (2017) Factoextra: extract and visualize the results of multivariate data analyses. R package version.
Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O. et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal, 50, 347-363.
Kobayashi, N.I., Yamaji, N., Yamamoto, H., Okubo, K., Ueno, H., Costa, A. et al. (2017) OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant Journal, 91, 657-670.
Kobayashi, Y., Sadhukhan, A., Tazib, T., Nakano, Y., Kusunoki, K., Kamara, M. et al. (2016) Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana. Plant Cell Environment, 39, 918-934. https://doi.org/10.1111/pce.12691
Korte, A., Vilhjálmsson, B.J., Segura, V., Platt, A., Long, Q. & Nordborg, M. (2012) A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics, 44, 1066-1071. Available from: https://www.nature.com/ng/journal/v44/n9/abs/ng.2376.html [Accessed 26th May 2021].
Kuhn, M. (2015) caret: classification and regression training. Astrophysics Source Code Library, ascl:1505.003. Available from: https://www.ui.adsabs.harvard.edu/abs/2015ascl.soft05003K [Accessed 1st May 2020].
Lee, U., Chang, S., Putra, G.A., Kim, H. & Kim, D.H. (2018) An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PLoS One, 13, e0196615.
Leisch, F. & Dimitriadou, E. (2010) mlbench: machine learning benchmark problems. R Package Version 2.0-2010. Available from: .https://rdrr.io/cran/mlbench/ [Accessed 26th May 2021].
Luo, M., Zhao, Y., Song, W., Ruyang, Z., Aiguo, S., Chunhui, L. et al. (2017) Effect of saline stress on the physiology and growth of maize hybrids and their related inbred lines. Maydica, 62, 11.
Meijón, M., Satbhai, S.B., Tsuchimatsu, T. & Busch, W. (2014) Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nature Genetics, 46, 77-81.
Morton, M.J.L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y., Negrão, S. et al. (2019) Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant Journal, 97, 148-163.
Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environment, 25, 239-250.
Munns, R. & Tester, M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Muranaka, S., Shimizu, K. & Kato, M. (2002) Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica, 40, 201-207.
Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S.I. (2007) Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 1767, 414-421.
Murchie, E.H. & Lawson, T. (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64, 3983-3998.
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. & Nambara, E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal, 41, 697-709.
Negrão, S. & Julkowska, M.M. (2020) Plant phenotyping. eLS, 1-14. https://doi.org/10.1002/9780470015902.a0028894
Negrão, S., Schmöckel, S.M. & Tester, M. (2017) Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. https://doi.org/10.1093/aob/mcw191
Neves-Piestun, B.G. & Bernstein, N. (2005) Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Functional Plant Biology, 32, 141-152.
Niu, X., Damsz, B., Kononowicz, A.K., Bressan, R.A. & Hasegawa, P.M. (1996) NaCl-induced alterations in both cell structure and tissue-specific plasma membrane H+ -ATPase gene expression. Plant Physiology, 111, 679-686.
Nordborg, M., Borevitz, J.O., Bergelson, J., Berry, C.C., Chory, J., Hagenblad, J. et al. (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, 30, 190-193.
Pan, Y.-Q., Guo, H., Wang, S.-M., Zhao, B., Zhang, J.-L., Ma, Q. et al. (2016) The photosynthesis, Na(+)/K(+) homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Frontiers in Plant Science, 7, 848.
Percey, W.J., McMinn, A., Bose, J., Breadmore, M.C., Guijt, R.M. & Shabala, S. (2016) Salinity effects on chloroplast PSII performance in glycophytes and halophytes1. Functional Plant Biology, 43, 1003-1015.
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J. et al. (2014) Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282-295. https://doi.org/10.1111/1477-8947.12054
R Core Team (2020) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rahaman, M.M., Ahsan, M.A. & Chen, M. (2019) Data-mining techniques for image-based plant phenotypic traits identification and classification. Scientific Reports, 9, 19526.
Rahnama, A., James, R.A., Poustini, K. & Munns, R. (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37, 255-263.
Rajendran, K., Tester, M. & Roy, S.J. (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environment, 32, 237-249.
Roy, S.J., Negrão, S. & Tester, M. (2014) Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124.
Saade, S., Maurer, A., Shahid, M., Oakey, H., Schmöckel, S.M., Negrão, S. et al. (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports, 6, 32586.
Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M. et al. (2005) A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37, 501-506.
Shahid, S.A., Zaman, M. & Heng, L. (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Zaman, M., Shahid, S.A. & Heng, L. (Eds.) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Cham, Switzerland: Springer International Publishing, pp. 43-53.
Shamaya, N.J., Shavrukov, Y., Langridge, P., Roy, S.J. & Tester, M. (2017) Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces. BMC Plant Biology, 17, 209.
Singh, A., Krause, P., Panda, S.N. & Flugel, W.-A. (2010) Rising water table: a threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India. Agricultural Water Management, 97, 1443-1451.
Slovak, R., Göschl, C., Su, X., Shimotani, K., Shiina, T. & Busch, W. (2014) A scalable open-source pipeline for large-scale root phenotyping of Arabidopsis. The Plant Cell, 26, 2390-2403. https://doi.org/10.1105/tpc.114.124032
Tardieu, F., Cabrera-Bosquet, L., Pridmore, T. & Bennett, M. (2017) Plant phenomics, from sensors to knowledge. Current Biology, 27, R770-R783.
Tilbrook, J., Schilling, R.K., Berger, B., Garcia, A.F., Trittermann, C., Coventry, S. et al. (2017) Variation in shoot tolerance mechanisms not related to ion toxicity in barley. Functional Plant Biology, 44(12), 1194-https://doi.org/10.1071/FP17049
Torii, K.U., Stoop-Myer, C.D., Okamoto, H., Coleman, J.E., Matsui, M. & Deng, X.W. (1999) The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein. Journal of Biological Chemistry, 274, 27674-27681.
Turner, S. (2011) Annotated Manhattan plots and QQ plots for GWAS using R, revisited. Nature Precedings https://doi.org/10.1038/npre.2011.6070.1
Ubbens, J.R. & Stavness, I. (2017) Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Frontiers in Plant Science, 8, https://doi.org/10.3389/fpls.2017.01190
van Zelm, E., Zhang, Y. & Testerink, C. (2020) Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71(1), 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005
Waese, J., Fan, J., Pasha, A., Yu, H., Fucile, G., Shi, R. et al. (2017) ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. The Plant Cell, 29, 1806-1821.
Wei, T. & Simko, V. (2017) R package “corrplot”: visualization of a correlation matrix (Version 0.84). Available from: https://github.com/taiyun/corrplot [Accessed 26th May 2021].
West, G., Inzé, D. & Beemster, G.T.S. (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology, 135, 1050-1058.
Wickham, H. (2016) ggplot2: elegant graphics for data analysis. Springer.
Wilke, C.O. (2016) cowplot: streamlined plot theme and plot annotations for “ggplot2.” CRAN Repos.
Willems, P., Horne, A., Van Parys, T., Goormachtig, S., De Smet, I., Botzki, A. et al. (2019) The plant PTM viewer, a central resource for exploring plant protein modifications. The Plant Journal, 99(4), 752-762.
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. & Provart, N.J. (2007) An “Electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One, 2, e718.
Wu, H., Shabala, L., Azzarello, E., Huang, Y., Pandolfi, C., Su, N. et al. (2018) Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. Journal of Experimental Botany, 69, 3987-4001.
York, L.M. (2019) Functional phenomics: an emerging field integrating high-throughput phenotyping, physiology, and bioinformatics. Journal of Experimental Botany, 70, 379-386.
Yuan, T.-T., Xu, H.-H., Zhang, Q., Zhang, L.-Y. & Lu, Y.-T. (2018) The COP1 target SHI-related sequence5 directly activates photomorphogenesis-promoting genes. The Plant Cell, 30, 2368-2382.
Zeng, L. & Shannon, M.C. (2000) Salinity effects on seedling growth and yield components of rice. Crop Science, 40, 996-1003.
Zhu, J.-K. (2016) Abiotic stress signaling and responses in plants. Cell, 167, 313-324.