Functional inhibition of cancer stemness-related protein DPP4 rescues tyrosine kinase inhibitor resistance in renal cell carcinoma.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
06 2021
Historique:
received: 23 12 2020
accepted: 26 04 2021
revised: 18 04 2021
pubmed: 12 5 2021
medline: 13 1 2022
entrez: 11 5 2021
Statut: ppublish

Résumé

Tyrosine kinase inhibitors (TKIs) are used as targeted drugs for advanced renal cell carcinoma (RCC), although most cases eventually progress by acquiring resistance. Cancer stemness plays critical roles in tumor aggressiveness and therapeutic resistance, and dipeptidyl peptidase IV (DPP4) has been recently identified as a cancer stemness-related protein. A question arises whether DPP4 contributes to TKI efficacy in RCC. We established patient-derived RCC spheroids and showed that DPP4 expression is associated with stemness-related gene expression. TKI sunitinib resistance was rescued by DPP4 inhibition using sitagliptin or specific siRNAs in RCC cells and tumors. DPP4 expression can be inducible by retinoic acid and repressed by ALDH1A inhibition. Among type 2 diabetes patients with clinical RCC tumors, higher TKI efficacy is observed in those bearing DPP4

Identifiants

pubmed: 33972682
doi: 10.1038/s41388-021-01822-5
pii: 10.1038/s41388-021-01822-5
doi:

Substances chimiques

Dipeptidyl-Peptidase IV Inhibitors 0
Protein Kinase Inhibitors 0
DPP4 protein, human EC 3.4.14.5
Dipeptidyl Peptidase 4 EC 3.4.14.5
Sitagliptin Phosphate TS63EW8X6F
Sunitinib V99T50803M

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3899-3913

Références

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.
pubmed: 29313949 doi: 10.3322/caac.21442
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
pubmed: 30207593 doi: 10.3322/caac.21492
Ghatalia P, Zibelman M, Geynisman DM, Plimack ER. Checkpoint Inhibitors for the Treatment of Renal Cell Carcinoma. Curr Treat Options Oncol. 2017;18:7.
pubmed: 28210995 doi: 10.1007/s11864-017-0458-0
Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17:313–9.
pubmed: 21386835 doi: 10.1038/nm.2304
Fendler A, Bauer D, Busch J, Jung K, Wulf-Goldenberg A, Kunz S, et al. Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun. 2020;11:929.
pubmed: 32066735 pmcid: 7026425 doi: 10.1038/s41467-020-14700-7
Corro C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res. 2018;4:3–18.
pubmed: 29416873 pmcid: 5783955 doi: 10.1002/cjp2.91
Varna M, Gapihan G, Feugeas JP, Ratajczak P, Tan S, Ferreira I, et al. Stem cells increase in numbers in perinecrotic areas in human renal cancer. Clin Cancer Res. 2015;21:916–24.
pubmed: 25501128 doi: 10.1158/1078-0432.CCR-14-0666
Luo L, Liang Y, Ding X, Ma X, Zhang G, Sun L, et al. Significance of cyclooxygenase-2, prostaglandin E2 and CD133 levels in sunitinib-resistant renal cell carcinoma. Oncol Lett. 2019;18:1442–50.
pubmed: 31423209 pmcid: 6607046
Oguro T, Ishibashi K, Sugino T, Hashimoto K, Tomita S, Takahashi N, et al. Humanised antihuman IL-6R antibody with interferon inhibits renal cell carcinoma cell growth in vitro and in vivo through suppressed SOCS3 expression. Eur J Cancer. 2013;49:1715–24.
pubmed: 23274199 doi: 10.1016/j.ejca.2012.11.038
Ishibashi K, Haber T, Breuksch I, Gebhard S, Sugino T, Kubo H, et al. Overriding TKI resistance of renal cell carcinoma by combination therapy with IL-6 receptor blockade. Oncotarget 2017;8:55230–45.
pubmed: 28903416 pmcid: 5589655 doi: 10.18632/oncotarget.19420
Pang R, Law WL, Chu ACY, Poon JT, Lam CSC, Chow AKM, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6:603–15.
pubmed: 20569697 doi: 10.1016/j.stem.2010.04.001
Ghani FI, Yamazaki H, Iwata S, Okamoto T, Aoe K, Okabe K, et al. Identification of cancer stem cell markers in human malignant mesothelioma cells. Biochem Biophys Res Commun. 2011;404:735–42.
pubmed: 21163253 doi: 10.1016/j.bbrc.2010.12.054
Inamoto T, Yamochi T, Ohnuma K, Iwata S, Kina S, Inamoto S, et al. Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation, cyclin-dependent kinase 2 reduction, p27(kip1) enhancement, and disruption of binding to the extracellular matrix. Clin Cancer Res. 2006;12:3470–7.
pubmed: 16740772 doi: 10.1158/1078-0432.CCR-06-0361
Angevin E, Isambert N, Trillet-Lenoir V, You B, Alexandre J, Zalcman G, et al. First-in-human phase 1 of YS110, a monoclonal antibody directed against CD26 in advanced CD26-expressing cancers. Br J Cancer. 2017;116:1126–34.
pubmed: 28291776 pmcid: 5418443 doi: 10.1038/bjc.2017.62
Röhrborn D, Wronkowitz N, Eckel J. DPP4 in Diabetes. Front Immunol. 2015;6:386.
pubmed: 26284071 pmcid: 4515598 doi: 10.3389/fimmu.2015.00386
Ishiguro T, Sato A, Ohata H, Ikarashi Y, Takahashi RU, Ochiya T, et al. Establishment and Characterization of an In Vitro Model of Ovarian Cancer Stem-like Cells with an Enhanced Proliferative Capacity. Cancer Res. 2016;76:150–60.
pubmed: 26669863 doi: 10.1158/0008-5472.CAN-15-0361
Namekawa T, Ikeda K, Horie-Inoue K, Suzuki T, Okamoto K, Ichikawa T, et al. ALDH1A1 in patient-derived bladder cancer spheroids activates retinoic acid signaling leading to TUBB3 overexpression and tumor progression. Int J Cancer. 2019;146:1099–113.
pubmed: 31187490 doi: 10.1002/ijc.32505
Shiba S, Ikeda K, Suzuki T, Shintani D, Okamoto K, Horie-Inoue K, et al. Hormonal Regulation of Patient-Derived Endometrial Cancer Stem-like Cells Generated by Three-Dimensional Culture. Endocrinology. 2019;160:1895–906.
pubmed: 31265065 doi: 10.1210/en.2019-00362
Pinheiro MM, Stoppa CL, Valduga CJ, Okuyama CE, Gorjao R, Pereira RMS, et al. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. Eur J Pham Sci. 2017;100:17–24.
doi: 10.1016/j.ejps.2016.12.040
Sakai I, Miyake H, Fujisawa M. Acquired resistance to sunitinib in human renal cell carcinoma cells is mediated by constitutive activation of signal transduction pathways associated with tumour cell proliferation. BJU Int. 2013;112:E211–220.
pubmed: 23305097 doi: 10.1111/j.1464-410X.2012.11655.x
Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet. 2004;5:276–87.
pubmed: 15131651 doi: 10.1038/nrg1315
Bulens F, Ilbanez-Tallon I, Acker PV, De Vriese A, Nelles L, Belayew A, et al. Retinoic acid induction of human tissue-type plasminogen activator gene expression via a direct repeat element (DR5) located at -7 kilobases. J Biol Chem. 1995;270:7167–75.
pubmed: 7706255 doi: 10.1074/jbc.270.13.7167
Holst JJ, Vilsbøll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297:127–36.
pubmed: 18786605 doi: 10.1016/j.mce.2008.08.012
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.
pubmed: 19097774 doi: 10.1016/j.ejca.2008.10.026
Sinha R, Winer AG, Chevinsky M, Jakubowski C, Chen YB, Dong Y, et al. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nat Commun. 2017;8:15165.
pubmed: 28489074 pmcid: 5436135 doi: 10.1038/ncomms15165
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharm Ther. 2019;198:135–59.
doi: 10.1016/j.pharmthera.2019.02.015
Varona A, Blanco L, Perez I, Gil J, Irazusta J, Lopez JI, et al. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent. BMC Cancer. 2010;10:193.
pubmed: 20459800 pmcid: 2876082 doi: 10.1186/1471-2407-10-193
Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:eaan2507.
pubmed: 28818916 doi: 10.1126/science.aan2507
Larrinaga G, Blanco L, Sanz B, Perez I, Gil J, Unda M, et al. The impact of peptidase activity on clear cell renal cell carcinoma survival. Am J Physiol Ren Physiol. 2012;303:F1584–1591.
doi: 10.1152/ajprenal.00477.2012
Christopherson KW 2nd, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol. 2002;169:7000–8.
pubmed: 12471135 doi: 10.4049/jimmunol.169.12.7000
Miyake M, Anai S, Fujimoto K, Ohnishi S, Kuwada M, Nakai Y, et al. 5-fluorouracil enhances the antitumor effect of sorafenib and sunitinib in a xenograft model of human renal cell carcinoma. Oncol Lett. 2012;3:1195–202.
pubmed: 22783417 pmcid: 3392575 doi: 10.3892/ol.2012.662
Diaz-Montero CM, Mao FJ, Barnard J, Parker Y, Zamanian-Daryoush M, Pink JJ, et al. MEK inhibition abrogates sunitinib resistance in a renal cell carcinoma patient-derived xenograft model. Br J Cancer. 2016;115:920–8.
pubmed: 27560553 pmcid: 5061902 doi: 10.1038/bjc.2016.263
Xu J, Wang J, He M, Han H, Xie W, Wang H, et al. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. Lab Investig. 2018;98:1333–46.
pubmed: 29789684 doi: 10.1038/s41374-018-0080-1
Sun CK, Leu S, Sheu JJ, Tsai TH, Sung HC, Chen YL, et al. Paradoxical impairment of angiogenesis, endothelial function and circulating number of endothelial progenitor cells in DPP4-deficient rat after critical limb ischemia. Stem Cell Res Ther. 2013;4:31.
pubmed: 23517567 pmcid: 3706813 doi: 10.1186/scrt181
Qin CJ, Zhao LH, Zhou X, Zhang HL, Wen W, Tang L, et al. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett. 2018;420:26–37.
pubmed: 29409972 doi: 10.1016/j.canlet.2018.01.064
Wronkowitz N, Gorgens SW, Romacho T, Villalobos LA, Ferrer CFS, Peiro C, et al. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim Biophys Acta. 2014;1842:1613–21.
pubmed: 24928308 doi: 10.1016/j.bbadis.2014.06.004
Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA. 2011;108:1397–402.
pubmed: 21220315 pmcid: 3029760 doi: 10.1073/pnas.1018898108
Korkaya H, G-Il Kim, Davis A, Malik F, Henry NL, Ithimakin S, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012;47:570–84.
pubmed: 22819326 pmcid: 3432419 doi: 10.1016/j.molcel.2012.06.014
Huang D, Ding Y, Zhou M, Rini B, Petillo D, Qian CH, et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 2010;70:1063–71.
pubmed: 20103651 pmcid: 3719378 doi: 10.1158/0008-5472.CAN-09-3965
Xin H, Zhang C, Hermann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009;69:2506–13.
pubmed: 19244102 pmcid: 2664264 doi: 10.1158/0008-5472.CAN-08-4323
Hatipoglu G, Hock SW, Weiss R, Fan Z, Sehm T, Choochani A, et al. Sunitinib impedes brain tumor progression and reduces tumor-induced neurodegeneration in the microenvironment. Cancer Sci. 2015;106:160–70.
pubmed: 25458015 pmcid: 4399021 doi: 10.1111/cas.12580
Makhov P, Naito S, Haifler M, Kutikov A, Boumber Y, Uzzo RG, et al. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 2018;9:374.
pubmed: 29515108 pmcid: 5841329 doi: 10.1038/s41419-018-0388-1
Long Z, Cao M, Su S, Wu G, Meng F, Wu H, et al. Inhibition of hepatocyte nuclear factor 1b induces hepatic steatosis through DPP4/NOX1-mediated regulation of superoxide. Free Radic Biol Med. 2017;113:71–83.
pubmed: 28942246 pmcid: 5927376 doi: 10.1016/j.freeradbiomed.2017.09.016
Pujadas G, De Nigris V, Prattichizzo F, Sala LL, Testa R, Ceriello A. The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory. Endocrine. 2017;56:509–20.
pubmed: 27530507 doi: 10.1007/s12020-016-1052-0
Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu CC, et al. EZH2 Modifies Sunitinib Resistance in Renal Cell Carcinoma by Kinome Reprogramming. Cancer Res. 2017;77:6651–66.
pubmed: 28978636 pmcid: 5712262 doi: 10.1158/0008-5472.CAN-17-0899
Bauvois B, Djavaheri-Mergny M, Rouillard D, Dumont J, Wietzerbin J. Regulation of CD26/DPPIV gene expression by interferons and retinoic acid in tumor B cells. Oncogene. 2000;19:265–72.
pubmed: 10645005 doi: 10.1038/sj.onc.1203292
Fahn HJ, Lee YH, Chen MT, Huang JK, Chen KK, Chang LS. The incidence and prognostic significance of humoral hypercalcemia in renal cell carcinoma. J Urol. 1991;145:248–50.
pubmed: 1988711 doi: 10.1016/S0022-5347(17)38305-2
Papworth K, Grankvist K, Ljungberg B, Rasmuson T. Parathyroid hormone-related protein and serum calcium in patients with renal cell carcinoma. Tumour Biol. 2005;26:201–6.
pubmed: 16006777 doi: 10.1159/000086953
Onuma E, Azuma Y, Saito H, Tsunenari T, Watanabe T, Hirabayashi M, et al. Increased renal calcium reabsorption by parathyroid hormone-related protein is a causative factor in the development of humoral hypercalcemia of malignancy refractory to osteoclastic bone resorption inhibitors. Clin Cancer Res. 2005;11:4198–203.
pubmed: 15930357 doi: 10.1158/1078-0432.CCR-04-2531
Joeckel E, Haber T, Prawitt D, Junker K, Hampel C, Thuroff JW, et al. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol Cancer. 2014;13:42.
pubmed: 24576174 pmcid: 3945739 doi: 10.1186/1476-4598-13-42
Guo FJ, Jiang R, Li X, Zhang P, Han X, Liu C. Regulation of chondrocyte differentiation by IRE1α depends on its enzymatic activity. Cell Signal. 2014;26:1998–2007.
pubmed: 24863879 doi: 10.1016/j.cellsig.2014.05.008
Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA, Albert ML. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol. 2015;16:850–8.
pubmed: 26075911 doi: 10.1038/ni.3201
Decalf J, Tarbell KV, Casrouge A, Price JD, Linder G, Mottez E, et al. Inhibition of DPP4 activity in humans establishes its in vivo role in CXCL10 post-translational modification: prospective placebo-controlled clinical studies. EMBO Mol Med. 2016;8:679–83.
pubmed: 27137491 pmcid: 4888857 doi: 10.15252/emmm.201506145
Mehta RJ, Jain RK, Leung S, Choo J, Nielsen T, Huntsman D, et al. FOXA1 is an independent prognostic marker for ER-positive breast cancer. Breast Cancer Res Treat. 2012;131:881–90.
pubmed: 21503684 doi: 10.1007/s10549-011-1482-6
Stany MP, Vathipadiekal V, Ozbun L, Stone RL, Mok SC, Xue H, et al. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers. PLoS ONE. 2011;6:e21121.
pubmed: 21754983 pmcid: 3130734 doi: 10.1371/journal.pone.0021121

Auteurs

Shuhei Kamada (S)

Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Takeshi Namekawa (T)

Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Kazuhiro Ikeda (K)

Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.

Takashi Suzuki (T)

Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Miyagi, Japan.

Makoto Kagawa (M)

Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan.

Hideki Takeshita (H)

Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan.

Akihiro Yano (A)

Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan.

Koji Okamoto (K)

Division of Cancer Differentiation, National Cancer Center Research Institute, Tokyo, Japan.

Tomohiko Ichikawa (T)

Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Kuniko Horie-Inoue (K)

Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.

Satoru Kawakami (S)

Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan.

Satoshi Inoue (S)

Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. sinoue@tmig.or.jp.
Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan. sinoue@tmig.or.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH