Intra-specific kin recognition contributes to inter-specific allelopathy: A case study of allelopathic rice interference with paddy weeds.

Oryza sativa allelochemical production allelopathy carbon and nitrogen partitioning kin and non-kin cultivar mixtures neighbour relatedness root placement pattern soil microbial community

Journal

Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004

Informations de publication

Date de publication:
12 2021
Historique:
revised: 04 05 2021
received: 10 03 2021
accepted: 04 05 2021
pubmed: 17 5 2021
medline: 6 1 2022
entrez: 16 5 2021
Statut: ppublish

Résumé

Species interactions and mechanisms affect plant coexistence and community assembly. Despite increasing knowledge of kin recognition and allelopathy in regulating inter-specific and intra-specific interactions among plants, little is known about whether kin recognition mediates allelopathic interference. We used allelopathic rice cultivars with the ability for kin recognition grown in kin versus non-kin mixtures to determine their impacts on paddy weeds in field trials and a series of controlled experiments. We experimentally tested potential mechanisms of the interaction via altered root behaviour, allelochemical production and resource partitioning in the dominant weed competitor, as well as soil microbial communities. We consistently found that the establishment and growth of paddy weeds were more inhibited by kin mixtures compared to non-kin mixtures. The effect was driven by kin recognition that induced changes in root placement, altered weed carbon and nitrogen partitioning, but was associated with similar soil microbial communities. Importantly, genetic relatedness enhanced the production of intrusive roots towards weeds and reduced the production of rice allelochemicals. These findings suggest that relatedness allows allelopathic plants to discriminate their neighbouring collaborators (kin) or competitors and adjust their growth, competitiveness and chemical defense accordingly.

Identifiants

pubmed: 33993534
doi: 10.1111/pce.14083
doi:

Substances chimiques

Pheromones 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3479-3491

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Anten, N. P. R., & Chen, B. J. W. (2021). Detect thy family: Mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant, Cell and Environment, 44(4), 1059-1071. https://doi.org/10.1111/pce.14011
Bastiaans, L., Kropff, M. J., Kempuchetty, N., Rajan, A., & Migo, T. R. (1997). Can simulation models help design rice cultivars that are more competitive against weeds? Field Crops Research, 51(1-2), 101-111. https://doi.org/10.1016/S0378-4290(96)01046-5
Baucom, R. S., & Holt, J. S. (2009). Weeds of agricultural importance: Bridging the gap between evolutionary ecology and crop and weed science. New Phytologist, 184(4), 741-743. https://doi.org/10.1111/j.1469-8137.2009.03077.x
Bennett, J. A., Riibak, K., Tamme, R., Lewis, R., & Partel, M. (2016). The reciprocal relationship between competition and intraspecific trait variation. Journal of Ecology, 104(5), 1410-1420. https://doi.org/10.1111/1365-2745.12614
Bilas, R. D., Bretman, A., & Bennett, T. (2021). Friends, neighbours and enemies: An overview of the communal and social biology of plants. Plant, Cell and Environment, 44(4), 997-1013. https://doi.org/10.1111/pce.13965
Broz, A. K., Broeckling, C. D., De-la-Peña, C., Lewis, M. R., Greene, E., Callaway, R. M., … Vivanco, J. M. (2010). Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biology, 10, 115. https://doi.org/10.1186/1471-2229-10-115
Donohue, K. (2003). The influence of neighbour relatedness on multilevel selection in the Great Lakes Sea rocket. American Naturalist, 162(1), 77-92. https://doi.org/10.1086/375299
Dudley, S. A., & File, A. L. (2007). Kin recognition in an annual plant. Biology Letters, 3(4), 435-438. https://doi.org/10.1098/rsbl.2007.0232
Dudley, S. A., Murphy, G. P., & File, A. L. (2013). Kin recognition and competition in plants. Functional Ecology, 27(4), 898-906. https://doi.org/10.1111/1365-2435.12121
Ehlers, B. K., David, P., Damgaard, C. F., & Lenormand, T. (2016). Competitor relatedness, indirect soil effects and plant coexistence. Journal of Ecology, 104(4), 1126-1135. https://doi.org/10.1111/1365-2745.12568
Fang, S. Q., Clark, R. T., Zheng, Y., Iyer-Pascuzzi, A. S., Weitz, J., Kochian, L. V., … Benfey, P. N. (2013). Genotypic recognition and spatial responses by rice roots. Proceedings of the National Academy of Sciences of the United States of America, 110, 2670-2675. https://doi.org/10.1073/pnas.1222821110
Fernandez, C., Monnier, Y., Santonja, M., Gallet, C., Weston, L. A., Prévosto, B., … Bousquet-Mélou, A. (2016). The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Frontiers in Plant Science, 7, 594. https://doi.org/10.3389/fpls.2016.00594
File, A. L., Murphy, G. P., & Dudley, S. A. (2012). Fitness consequences of plants growing with siblings: Reconciling kin selection, niche partitioning and competitive ability. Proceedings of the Royal Society B: Biological Sciences, 279, 209-218. https://doi.org/10.1098/rspb.2011.1995
Formenti, L., Caggìa, V., Puissant, J., Goodall, T., Glauser, G., Griffiths, R., & Rasmann, S. (2021). The effect of root-associated microbes on plant growth and chemical defence traits across two contrasted elevations. Journal of Ecology, 109(1), 38-50. https://doi.org/10.1111/1365-2745.13440
Fridley, J. D., & Grime, P. (2010). Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology, 91, 2272-2283. https://doi.org/10.1890/09-1240.1
Gealy, D. R., Rohlla, J. S., & Boykin, D. L. (2019). Genetic potential of rice under alternate-wetting-and-drying irrigation management for barnyardgrass (Echinochloa crus-galli) suppression and grain yield production. Weed Science, 67, 453-462. https://doi.org/10.1017/wsc.2019.24
Genung, M. A., Bailey, J. K., & Schweitzer, J. A. (2012). Welcome to the neighborhood: Interspecific genotype by genotype interactions in Solidago influence above and belowground biomass and associated communities. Ecology Letters, 15, 65-73. https://doi.org/10.1111/j.1461-0248.2011.01710.x
Gruntman, M., & Novoplansky, A. (2004). Physiologically mediated self/non-self discrimination in roots. Proceedings of the National Academy of Sciences of the United States of America, 101, 3863-3867. https://doi.org/10.1073/pnas.0306604101
Hu, L. F., Robert, C. A. M., Cadot, S. C., Zhang, X., Ye, M., Li, B. B., … Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9(1), 2738. https://doi.org/10.1038/s41467-018-05122-7
Inderjit, S., Wardle, D. A., Karban, R., & Callaway, R. M. (2011). The ecosystem and evolutionary contexts of allelopathy. Trends in Ecology & Evolution, 26, 655-662. https://doi.org/10.1016/j.tree.2011.08.003
Kalske, A., Shiojiri, K., Uesugi, A., Sakata, Y., & Kessler, A. (2019). Insect herbivory selects for volatile-mediated plant-plant communication. Current Biology, 29, 3128-3133. https://doi.org/10.1016/j.cub.2019.08.011
Karban, R., Shiojiri, K., Ishizaki, S., Wetzel, W. C., & Evans, R. Y. (2013). Kin recognition affects plant communication and defence. Proceedings of the Royal Society B: Biological Sciences, 280, 20123062. https://doi.org/10.1098/rspb.2012.3062
Kato-Noguchi, H. (2011). Barnyard grass-induced rice allelopathy and momilactone B. Journal of Plant Physiology, 168, 1016-1020. https://doi.org/10.1016/j.jplph.2010.12.021
Kong, C. H., Hu, F., Wang, P., & Wu, J. L. (2008). Effect of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Management Science, 64(3), 276-282. https://doi.org/10.1002/ps.1521
Kong, C. H., Li, H. B., Hu, F., Xu, X. H., & Wang, P. (2006). Allelochemicals released by rice roots and residues in soil. Plant and Soil, 288(1-2), 47-56. https://doi.org/10.1007/s11104-006-9033-3
Kong, C. H., Liang, W. J., Xu, X. H., Hu, F., Wang, P., & Jiang, Y. (2004). Release and activity of allelochemicals from allelopathic rice seedlings. Journal of Agricultural and Food Chemistry, 52(10), 2861-2865. https://doi.org/10.1021/jf035467i
Kong, C. H., Zhang, S. Z., Li, Y. H., Xia, Z. C., Yang, X. F., Meiners, S. J., & Wang, P. (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 9(1), 3867. https://doi.org/10.1038/s41467-018-06429-1
Lankau, R. A., & Strauss, S. Y. (2007). Mutual feedbacks maintain both genetic and species diversity in a plant community. Science, 317, 1561-1563. https://doi.org/10.1126/science.1147455
Li, L. L., Zhao, H. H., & Kong, C. H. (2020). (−)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. Journal of Experimental Botany, 71(4), 1540-1550. https://doi.org/10.1093/jxb/erz497
Macías, F. A., Mejías, F. J., & Molinillo, J. M. (2019). Recent advances in allelopathy for weed control: From knowledge to applications. Pest Management Science, 75(9), 2413-2436. https://doi.org/10.1002/ps.5355
Maron, J. L., Hahn, P. G., Hajek, K. L., & Pearson, D. E. (2021). Trade-offs between seed size and biotic interactions contribute to coexistence of co-occurring species that vary in fecundity. Journal of Ecology, 109(2), 626-638. https://doi.org/10.1111/1365-2745.13491
Meiners, S. J., Kong, C. H., Ladwig, L. M., Pisula, N. L., & Lang, K. A. (2012). Developing an ecological context for allelopathy. Plant Ecology, 213(8), 1221-1227. https://doi.org/10.1007/s11258-012-0078-5
Metlen, K. L., Aschehoug, E. T., & Callaway, R. M. (2009). Plant behavioural ecology: Dynamic plasticity in secondary metabolites. Plant, Cell and Environment, 32(6), 641-653. https://doi.org/10.1111/j.1365-3040.2008.01910.x
Miki, T., Ushio, M., Fukui, S., & Kondoh, M. (2010). Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model. Proceedings of the National Academy of Sciences of the United States of America, 107, 14251-14256. https://doi.org/10.1073/pnas.0914281107
Murphy, G. P., Swanton, C. J., van Acker, R. C., & Dudley, S. A. (2017). Kin recognition, multilevel selection and altruism in crop sustainability. Journal of Ecology, 105(4), 930-934. https://doi.org/10.1111/1365-2745.12787
Nourimand, M., & Todd, C. D. (2016). Allantoin increases cadmium tolerance in Arabidopsis via activation of antioxidant mechanisms. Plant and Cell Physiology, 57(12), 2485-2496. http://doi.org/10.1093/pcp/pcw162
Olofsdotter, M., Navarez, D., Rebulanan, M., & Streibig, J. C. (1999). Weed suppressing rice cultivars - does allelopathy play a role? Weed Research, 39(6), 441-454. http://doi.org/10.1046/j.1365-3180.1999.00159.x
Ormeno, E., Fernandez, C., & Mevy, J. P. (2007). Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry, 68, 840-852. https://doi.org/10.1016/j.phytochem.2006.11.033
Patni, B., Chandra, H., Mishra, A. P., Guru, S. K., Vitalini, S., & Iriti, M. (2018). Rice allelopathy in weed management - an integrated approach. Cellular and Molecular Biology, 64, 84-93. https://doi.org/10.14715/cmb/2018.64.8.13
Pierik, R., Mommer, L., & Voesenek, L. A. C. J. (2013). Molecular mechanisms of plant competition: Neighbour detection and response strategies. Functional Ecology, 27(4), 841-853. https://doi.org/10.2307/23480993
Semchenko, M., John, E. A., & Hutchings, M. J. (2007). Effects of physical connection and genetic identity of neighbouring ramets on root placement patterns in two clonal species. New Phytologist, 176(3), 644-654. https://doi.org/10.1111/j.1469-8137.2007.02211.x
Semchenko, M., Saar, S., & Lepik, A. (2014). Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytologist, 204(3), 631-637. https://doi.org/10.1111/nph.12930
Semchenko, M., Saar, S., & Lepik, A. (2017). Intraspecific genetic diversity modulates plant-soil feedback and nutrient cycling. New Phytologist, 216(1), 90-98. https://doi.org/10.1111/nph.14653
Serra, N. S., Shanmuganathan, R., & Becker, C. (2021). Allelopathy in rice: A story on momilactones, kin recognition, and weed management. Journal of Experimental Botany, 72(11), 4022-4037. https://doi.org/10.1093/jxb/erab084
Sun, B., Wang, P., & Kong, C. H. (2014). Plant-soil feedback in the interference of allelopathic rice with barnyardgrass. Plant and Soil, 377(1), 309-321. https://doi.org/10.1007/s11104-013-2004-6
Takagi, H., Ishiga, Y., Watanabe, S., Konishi, T., Egusa, M., Akiyoshi, N., … Sakamoto, A. (2016). Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid dependent manner. Journal of Experimental Botany, 67(8), 2519-2532. https://doi.org/10.1093/jxb/erw071
Tilman, D., & Pacala, S. (1993). The maintenance of species richness in plant communities. In R. E. Ricklefs & D. Schluter (Eds.), Species diversity in ecological communities: Historical and geographical perspectives. Chicago, IL: University of Chicago Press.
Wang, N. Q., Kong, C. H., Wang, P., & Meiners, S. J. (2021). Root exudate signals in plant-plant interactions. Plant, Cell and Environment, 44(4), 1044-1058. https://doi.org/10.1111/pce.13892
Wang, P., Kong, C. H., Hu, F., & Xu, X. H. (2007). Allantoin involved in species interactions with rice and other organisms in paddy soil. Plant and Soil, 296(1-2), 43-51. https://doi.org/10.1007/s11104-007-9288-3
Wang, P., Kong, C. H., Sun, B., & Xu, X. H. (2010). Allantoin-induced change of microbial diversity and community in rice soil. Plant and Soil, 332(1), 357-368. https://doi.org/10.1007/s11104-010-0301-x
Xia, Z. C., Kong, C. H., Chen, L. C., Wang, P., & Wang, S. L. (2016). A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology, 97(9), 2283-2292. https://doi.org/10.1002/ecy.1465
Yamawo, A. (2015). Relatedness of neighboring plants alters the expression of indirect defense traits in an extrafloral nectary-bearing plant. Evolutionary Biology, 42, 12-19. https://doi.org/10.1007/s11692-014-9295-2
Yamawo, A., & Mukai, H. (2020). Outcome of interspecific competition depends on genotype of conspecific neighbours. Oecologia, 193, 415-423. https://doi.org/10.1007/s00442-020-04694-w
Yang, X. F., & Kong, C. H. (2017). Interference of allelopathic rice with paddy weeds at the root level. Plant Biology, 19(4), 584-591. https://doi.org/10.1111/plb.12557
Yang, X. F., Li, L. L., Xu, Y., & Kong, C. H. (2018). Kin recognition in rice (Oryza sativa) lines. New Phytologist, 220(2), 567-578. https://doi.org/10.1111/nph.15296
Zhang, L., Liu, Q. Y., Tian, Y. Q., Xu, X. L., & Ouyang, H. (2016). Kin selection or resource partitioning for growing with siblings: Implications from measurements of nitrogen uptake. Plant and Soil, 398, 79-86. https://doi.org/10.1007/s11104-015-2641-z
Zhang, Z., Liu, Y., Yuan, L., Weber, E., & van Kleunen, M. (2020). Effect of allelopathy on plant performance: A meta-analysis. Ecology Letters, 24, 348-362. https://doi.org/10.1111/ele.13627

Auteurs

You Xu (Y)

College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.

Hui-Fang Cheng (HF)

College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.

Chui-Hua Kong (CH)

College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.

Scott J Meiners (SJ)

Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, USA.

Articles similaires

1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Fine mapping of a major QTL, qECQ8, for rice taste quality.

Shan Zhu, Guoping Tang, Zhou Yang et al.
1.00
Oryza Quantitative Trait Loci Taste Chromosome Mapping Phenotype
Indoleacetic Acids Babesia Gene Knockdown Techniques Protozoan Proteins Oryza
Siderophores Herbicides Plant Weeds Lolium Actinobacteria

Classifications MeSH