A scalable bubble-free membrane aerator for biosurfactant production.

Pseudomonas putida foam-free membrane aeration metabolic engineering rhamnolipid

Journal

Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021

Informations de publication

Date de publication:
09 2021
Historique:
received: 06 04 2021
accepted: 13 05 2021
pubmed: 19 5 2021
medline: 3 3 2022
entrez: 18 5 2021
Statut: ppublish

Résumé

The bioeconomy is a paramount pillar in the mitigation of greenhouse gas emissions and climate change. Still, the industrialization of bioprocesses is limited by economical and technical obstacles. The synthesis of biosurfactants as advanced substitutes for crude-oil-based surfactants is often restrained by excessive foaming. We present the synergistic combination of simulations and experiments towards a reactor design of a submerged membrane module for the efficient bubble-free aeration of bioreactors. A digital twin of the combined bioreactor and membrane aeration module was created and the membrane arrangement was optimized in computational fluid dynamics studies with respect to fluid mixing. The optimized design was prototyped and tested in whole-cell biocatalysis to produce rhamnolipid biosurfactants from sugars. Without any foam formation, the new design enables a considerable higher space-time yield compared to previous studies with membrane modules. The design approach of this study is of generic nature beyond rhamnolipid production.

Identifiants

pubmed: 34002856
doi: 10.1002/bit.27822
doi:

Substances chimiques

Glycolipids 0
Membranes, Artificial 0
Surface-Active Agents 0
rhamnolipid 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3545-3558

Informations de copyright

© 2021 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals LLC.

Références

Alagappan, G. , & Cowan, R. M. (2004). Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere, 54(8), 1255-1265. https://doi.org/10.1016/j.chemosphere.2003.09.013
Anic, I. , Apolonia, I. , Franco, P. , & Wichmann, R. (2018). Production of rhamnolipids by integrated foam adsorption in a bioreactor system. AMB Express, 8(1), 122. https://doi.org/10.1186/s13568-018-0651-y
Bach, C. , Yang, J. , Larsson, H. , Stocks, S. M. , Gernaey, K. V. , Albaek, M. O. , & Krühne, U. (2017). Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD. Chemical Engineering Science, 171, 19-26. https://doi.org/10.1016/j.ces.2017.05.001
Bagdasarian, M. , Lurz, R. , Rückert, B. , Franklin, F. , Bagdasarian, M. , Frey, J. , & Timmis, K. (1981). Specific-purpose plasmid cloning vectors II. Broad host range, high copy number, RSF 1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas . Gene, 16(1-3), 237-247. https://doi.org/10.1016/0378-1119(81)90080-9
Banat, I. M. , Makkar, R. S. , & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53(5), 495-508. https://doi.org/10.1007/s002530051648
Bator, I. , Wittgens, A. , Rosenau, F. , Tiso, T. , & Blank, L. M. (2020). Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Frontiers in Bioengineering and Biotechnology, 7, 480. https://doi.org/10.3389/fbioe.2019.00480
Behrens, B. , Baune, M. , Jungkeit, J. , Tiso, T. , Blank, L. M. , & Hayen, H. (2016). High performance liquid chromatography- charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. Journal of Chromatography A, 1455, 125-132. https://doi.org/10.1016/j.chroma.2016.05.079
Blesken, C. C. , Strümpfler, T. , Tiso, T. , & Blank, L. M. (2020). Uncoupling foam fractionation and foam adsorption for enhanced biosurfactant synthesis and recovery. Microorganisms, 8(12), 2029. https://doi.org/10.3390/microorganisms8122029
Carstensen, F. , Klement, T. , Büchs, J. , Melin, T. , & Wessling, M. (2013). Continuous production and recovery of itaconic acid in a membrane bioreactor. Bioresource Technology, 137, 179-187. https://doi.org/10.1016/j.biortech.2013.03.044
Cazzolla Gatti, R. , Liang, J. , Velichevskaya, A. , & Zhou, M. (2019). Sustainable palm oil may not be so sustainable. Science of The Total Environment, 652, 48-51. https://doi.org/10.1016/j.scitotenv.2018.10.222
Charcosset, C. (2012). Membrane processes in biotechnology and pharmaceutics. Elsevier. https://doi.org/10.1016/C2011-0-04261-8
Chong, H. , & Li, Q. (2017). Microbial production of rhamnolipids: Opportunities, challenges and strategies. Microbial Cell Factories, 16(1), 137. https://doi.org/10.1186/s12934-017-0753-2
Cote, P. , Bersillon, J.-L. , & Huyard, A. (1989). Bubble-free aeration using membranes: Mass transfer analysis. Journal of Membrane Science, 47(1-2), 91-106. https://doi.org/10.1016/S0376-7388(00)80862-5
Cote, P. , Bersillon, J.-L. , Huyard, A. , & Faup, G. (1988). Bubble-free aeration using membranes: Process analysis. Journal (Water Pollution Control Federation), 1986-1992.
Coutte, F. , Lecouturier, D. , Yahia, S. A. , Leclère, V. , Béchet, M. , Jacques, P. , & Dhulster, P. (2010). Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology and Biotechnology, 87(2), 499-507. https://doi.org/10.1007/s00253-010-2504-8
Cutayar, J.-M. , Poillon, D. , & Cutayar, S. (1990). US Patent No. 4,978,545. Washington, DC: US Patent and Trademark Office.
Davey, M. E. , Caiazza, N. C. , & O'Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185(3), 1027-1036. https://doi.org/10.1128/jb.185.3.1027-1036.2003
De Almeida, D. G. , Soares Da Silva, R. D. C. F. , Luna, J. M. , Rufino, R. D. , Santos, V. A. , Banat, I. M. , & Sarubbo, L. A. (2016). Biosurfactants: Promising molecules for petroleum biotechnology advances. Frontiers in Microbiology, 7, 1718. https://doi.org/10.3389/fmicb.2016.01718
Delvigne, F. , & Lecomte, J.-P. (2009). Foam formation and control in bioreactors. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, 121, 1-13. https://doi.org/10.1002/9780470054581.eib326
Demling, P. , von Campenhausen, M. , Grütering, C. , Tiso, T. , Jupke, A. , & Blank, L. M. (2020). Selection of a recyclable in situ liquid-liquid extraction solvent for foam-free synthesis of rhamnolipids in a two-phase fermentation. Green Chemistry, 22(23), 8495-8510. https://doi.org/10.1039/D0GC02885A
Deng, L. , Guo, W. , Ngo, H. H. , Zhang, H. , Wang, J. , Li, J. , & Wu, Y. (2016). Biofouling and control approaches in membrane bioreactors. Bioresource Technology, 221, 656-665. https://doi.org/10.1016/j.biortech.2016.09.105
Drioli, E. , Curcio, E. , & Di Profio, G. (2005). State of the art and recent progresses in membrane contactors. Chemical Engineering Research and Design, 83(3), 223-233. https://doi.org/10.1205/cherd.04203
Fiechter, A. (1992). Biosurfactants: Moving towards industrial application. Trends in Food Science & Technology, 3, 286-293. https://doi.org/10.1016/0167-7799(92)90215-H
Gjermansen, M. , Nilsson, M. , Yang, L. , & Tolker-Nielsen, T. (2010). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: Genetic elements and molecular mechanisms. Molecular Microbiology, 75(4), 815-826. https://doi.org/10.1111/j.1462-2920.2005.00775.x
Gruber, T. , Chmiel, H. , K¨appeli, O. , & Sticher, P. (1993). Integrated process for continuous rhamnolipid biosynthesis, Biosurfactant (p. 157).
Gruber, T.  (1991). Verfahrenstechnische Aspekte der kontinuierlichen Produktion von Biotensiden am Beispiel der Rhamnolipide. Stuttgart: Universität Stuttgart
Gunther, N. W. , Nunez, A. , Fett, W. , & Solaiman, D. K. (2005). Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Applied and Environmental Microbiology, 71(5), 2288-2293. https://doi.org/10.1128/AEM.71.5.2288-2293.2005
Hartmans, S. , De Bont, J. , & Harder, W. (1989). Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiology Letters, 63(3), 235-264. https://doi.org/10.1016/0378-1097(89)90133-X
Henkel, M. , Müller, M. M. , Kügler, J. H. , Lovaglio, R. B. , Contiero, J. , Syldatk, C. , & Hausmann, R. (2012). Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 47(8), 1207-1219. https://doi.org/10.1016/j.procbio.2012.04.018
Henzler, H.-J. (2000). Particle stress in bioreactors, Influence of stress on cell growth and product formation (pp. 35-82). Springer. https://doi.org/10.1007/3-540-47865-5
Hoeks, F. W. , Van Wees-Tangerman, C. , Luyben, K. C. A. , Gasser, K. , Schmid, S. , & Mommers, H. M. (1997). Stirring as foam disruption (SAFD) technique in fermentation processes. The Canadian Journal of Chemical Engineering, 75(6), 1018-1029. https://doi.org/10.1002/cjce.5450750604
Irie, Y. , O'toole, G. A. , & Yuk, M. H. (2005). Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiology Letters, 250(2), 237-243. https://doi.org/10.1016/j.femsle.2005.07.012
Junker, B. (2007). Foam and its mitigation in fermentation systems. Biotechnology Progress, 23(4), 767-784. https://doi.org/10.1021/bp070032r
Kosaric, N. , & Sukan, F. V. (2014). Biosurfactants: Production and utilization-processes, technologies, and economics. CRC Press. https://doi.org/10.1201/b17599
Krishnan, S. , Weinman, C. J. , & Ober, C. K. (2008). Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry, 18(29), 3405-3413. https://doi.org/10.1039/B801491D
de Kronemberger, F. A. , Santa Anna, L. M. M. , Fernandes, A. C. L. B. , de Menezes, R. R. , Borges, C. P. , & Freire, D. M. G. (2007). Oxygen-controlled biosurfactant production in a bench scale bioreactor, Biotechnology for fuels and chemicals (pp. 401-413). Springer. https://doi.org/10.1007/s12010-007-8057-3
Müller, M. M. , Hörmann, B. , Syldatk, C. , & Hausmann, R. (2010). Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Applied Microbiology and Biotechnology, 87(1), 167-174. https://doi.org/10.1007/s00253-010-2513-7
Nelson, K. E. , Weinel, C. , Paulsen, I. T. , Dodson, R. J. , Hilbert, H. , Martins dos Santos, V. A. , Fouts, D. E. , Gill, S. R. , Pop, M. , Holmes, M. , Brinkac, L. , Beanan, M. , DeBoy, R. T. , Daugherty, S. , Kolonay, J. , Madupu, R. , Nelson, W. , White, O. , Peterson, J. , … Fraser, C. M. (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology, 4(12), 799-808. https://doi.org/10.1046/j.1462-2920.2002.00366.x
Nienow, A. W. (1998). Hydrodynamics of stirred bioreactors. Applied Mechanics Reviews, 51(1), 3-32. https://doi.org/10.1115/1.3098990
Soltani Dashtbozorg, S. , Miao, S. , & Ju, L.-K. (2016). Rhamnolipids as environmentally friendly biopesticide against plant pathogen Phytophthora sojae . Environmental Progress & Sustainable Energy, 35(1), 169-173. https://doi.org/10.1002/ep.12187
Syron, E. , & Casey, E. (2008). Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science & Technology, 42(6), 1833-1844. https://doi.org/10.1021/es0719428
Tiso, T. , Germer, A. , Küpper, B. , Wichmann, R. , & Blank, L. M. (2015). Methods for recombinant rhamnolipid production, Hydrocarbon and lipid microbiology protocols (pp. Springer Protocols Handbooks, 65-94). Berlin, Heidelberg: Springer. https://doi.org/10.1007/8623_2015_60
Tiso, T. , Ihling, N. , Kubicki, S. , Biselli, A. , Schonhoff, A. , Bator, I. , Thies, S. , Karmainski, T. , Kruth, S. , Willenbrink, A. L. , Loeschcke, A. , Zapp, P. , Jupke, A. , Jaeger, K. E. , Büchs, J. , & Blank, L. M. (2020). Integration of genetic and process engineering for optimized rhamnolipid production using Pseudomonas putida . Frontiers in Bioengineering and Biotechnology, 8, 976. https://doi.org/10.3389/fbioe.2020.00976
Tiso, T. , Zauter, R. , Tulke, H. , Leuchtle, B. , Li, W.-J. , Behrens, B. , & Blank, L. M. (2017). Designer rhamnolipids by reduction of congener diversity: Production and characterization. Microbial Cell Factories, 16(1), 225. https://doi.org/10.1186/s12934-017-0838-y
Trad, Z. , Vial, C. , Fontaine, J.-P. , & Larroche, C. (2015). Modeling of hydrodynamics and mixing in a submerged membrane bioreactor. Chemical Engineering Journal, 282, 77-90. https://doi.org/10.1016/j.cej.2015.04.119
Vardar-Sukan, F. (1992). Foaming and its control in bioprocesses, Recent advances in biotechnology (pp. 113-146). Springer. https://doi.org/10.1007/978-94-011-2468-36
Vlaev, S. D. , Tsibranska, I. , & Dzhonova-Atanasova, D. (2018). Hydrodynamic characterization of dual-impeller submerged membrane bioreactor relevant to single-use bioreactor options. Chemical Engineering Research and Design, 132, 930-941. https://doi.org/10.1016/j.cherd.2018.02.004
Wittgens, A. , Tiso, T. , Arndt, T. T. , Wenk, P. , Hemmerich, J. , Müller, C. , Wichmann, R. , Küpper, B. , Zwick, M. , Wilhelm, S. , Hausmann, R. , Syldatk, C. , Rosenau, F. , & Blank, L. M. (2011). Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 10(1), 80. https://doi.org/10.1186/1475-2859-10-80
Wu, Q. , Yan, X. , Xiao, K. , Guan, J. , Li, T. , Liang, P. , & Huang, X. (2018). Optimization of membrane unit location in a full-scale membrane bioreactor using computational fluid dynamics. Bioresource Technology, 249, 402-409. https://doi.org/10.1016/j.biortech.2017.09.209
Xiao, K. , Liang, S. , Wang, X. , Chen, C. , & Huang, X. (2019). Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresource Technology, 271, 473-481. https://doi.org/10.1016/j.biortech.2018.09.061

Auteurs

Patrick Bongartz (P)

Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.
Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.

Isabel Bator (I)

Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.

Kristina Baitalow (K)

Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.

Robert Keller (R)

Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.

Till Tiso (T)

Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.

Lars Mathias Blank (LM)

Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.

Matthias Wessling (M)

Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.
DWI Leibniz - Institute for Interactive Materials, Aachen, Germany.

Articles similaires

Organoids Animals Kidney Mice Humans
Hemolysin Proteins Artificial Cells Protein Engineering Protein Transport Cell Membrane
Corynebacterium glutamicum Tyramine Metabolic Engineering Phylogeny Fermentation
Humans Polytetrafluoroethylene Titanium Retrospective Studies Male

Classifications MeSH