MicroRNAs as Biomarkers of Charcot-Marie-Tooth Disease Type 1A.
Action Potentials
Adult
Aging
Biomarkers
/ analysis
Charcot-Marie-Tooth Disease
/ diagnosis
Computational Biology
Female
High-Throughput Nucleotide Sequencing
Humans
Male
MicroRNAs
/ analysis
Middle Aged
Motor Neurons
Muscle, Skeletal
/ physiopathology
Neural Conduction
Neurofilament Proteins
/ chemistry
Peripheral Nerves
/ metabolism
Reproducibility of Results
Schwann Cells
/ metabolism
Ulnar Nerve
/ physiopathology
Journal
Neurology
ISSN: 1526-632X
Titre abrégé: Neurology
Pays: United States
ID NLM: 0401060
Informations de publication
Date de publication:
03 08 2021
03 08 2021
Historique:
received:
17
11
2020
accepted:
26
04
2021
pubmed:
26
5
2021
medline:
13
8
2021
entrez:
25
5
2021
Statut:
ppublish
Résumé
To determine whether microRNAs (miRs) are elevated in the plasma of individuals with the inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1A (CMT1A), miR profiling was employed to compare control and CMT1A plasma. We performed a screen of CMT1A and control plasma samples to identify miRs that are elevated in CMT1A using next-generation sequencing, followed by validation of selected miRs by quantitative PCR, and correlation with protein biomarkers and clinical data: Rasch-modified CMT Examination and Neuropathy Scores, ulnar compound muscle action potentials, and motor nerve conduction velocities. After an initial pilot screen, a broader screen confirmed elevated levels of several muscle-associated miRNAs (miR1, -133a, -133b, and -206, known as myomiRs) along with a set of miRs that are highly expressed in Schwann cells of peripheral nerve. Comparison to other candidate biomarkers for CMT1A (e.g., neurofilament light) measured on the same sample set shows a comparable elevation of several miRs (e.g., miR133a, -206, -223) and ability to discriminate cases from controls. Neurofilament light levels were most highly correlated with miR133a. In addition, the putative Schwann cell miRs (e.g., miR223, -199a, -328, -409, -431) correlate with the recently described transmembrane protease serine 5 (TMPRSS5) protein biomarker that is most highly expressed in Schwann cells and also elevated in CMT1A plasma. These studies identify a set of miRs that are candidate biomarkers for clinical trials in CMT1A. Some of the miRs may reflect Schwann cell processes that underlie the pathogenesis of the disease. This study provides Class III evidence that a set of plasma miRs are elevated in patients with CMT1A.
Identifiants
pubmed: 34031204
pii: WNL.0000000000012266
doi: 10.1212/WNL.0000000000012266
pmc: PMC8356381
doi:
Substances chimiques
Biomarkers
0
MicroRNAs
0
Neurofilament Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e489-e500Subventions
Organisme : NICHD NIH HHS
ID : P50 HD105353
Pays : United States
Organisme : NCATS NIH HHS
ID : R21 TR003034
Pays : United States
Organisme : NINDS NIH HHS
ID : U54 NS065712
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD090256
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021 American Academy of Neurology.
Références
Nat Med. 2014 Sep;20(9):1055-61
pubmed: 25150498
Hum Mol Genet. 2019 Nov 1;28(21):3528-3542
pubmed: 31411673
Cell. 1991 Jul 26;66(2):219-32
pubmed: 1677316
Science. 2009 Dec 11;326(5959):1549-54
pubmed: 20007902
Nat Commun. 2015 Oct 14;6:8584
pubmed: 26466203
Nucleic Acids Res. 2020 Jan 8;48(D1):D148-D154
pubmed: 31647101
PLoS One. 2013 Jun 11;8(6):e65868
pubmed: 23776562
Neurology. 2018 Sep 18;91(12):e1125-e1129
pubmed: 30120135
Hum Mol Genet. 2019 Apr 15;28(8):1260-1273
pubmed: 30535360
Orphanet J Rare Dis. 2014 Dec 10;9:201
pubmed: 25491744
J Clin Invest. 2018 Jan 2;128(1):359-368
pubmed: 29202483
Ann Clin Transl Neurol. 2019 Jul;6(7):1292-1301
pubmed: 31353867
Neuromuscul Disord. 2018 Jun;28(6):502-507
pubmed: 29729827
Bioessays. 2015 May;37(5):502-13
pubmed: 25707700
Glia. 2009 Sep;57(12):1265-79
pubmed: 19170179
J Neurosci. 2011 Nov 30;31(48):17358-69
pubmed: 22131398
Lancet Neurol. 2016 Jan;15(1):65-77
pubmed: 26549782
Ann Neurol. 2019 Jun;85(6):887-898
pubmed: 30945774
J Peripher Nerv Syst. 2011 Sep;16(3):191-8
pubmed: 22003934
J Peripher Nerv Syst. 2014 Sep;19(3):192-6
pubmed: 25400013
Nat Med. 2003 Dec;9(12):1533-7
pubmed: 14608378
J Neurol Neurosurg Psychiatry. 2017 Nov;88(11):941-952
pubmed: 28860329
Ann Clin Transl Neurol. 2020 Jan;7(1):69-82
pubmed: 31833243
Mol Med Rep. 2017 Sep;16(3):2417-2424
pubmed: 28677735
Brain Res. 2020 Jan 1;1726:146491
pubmed: 31586623
Biochem Soc Trans. 2013 Aug;41(4):944-50
pubmed: 23863161
Neurology. 2018 Feb 6;90(6):e518-e524
pubmed: 29321234
Sci Rep. 2016 Jun 21;6:28097
pubmed: 27323895
Clin Chem. 2015 Nov;61(11):1343-53
pubmed: 26408531
Orphanet J Rare Dis. 2014 Dec 18;9:199
pubmed: 25519680
Sci Rep. 2019 Aug 13;9(1):11733
pubmed: 31409882
Lancet Neurol. 2011 Apr;10(4):320-8
pubmed: 21393063
Dig Dis Sci. 2012 Apr;57(4):897-904
pubmed: 22198701
J Neurol Neurosurg Psychiatry. 2012 Jul;83(7):706-10
pubmed: 22577229
Eur J Neurol. 2016 Oct;23(10):1566-71
pubmed: 27412484
Mol Ther Nucleic Acids. 2016 Jul 05;5(7):e331
pubmed: 27377135
Neurology. 2020 Mar 3;94(9):e884-e896
pubmed: 32047073
Brain. 1996 Oct;119 ( Pt 5):1461-9
pubmed: 8931571
Cell Rep. 2017 Sep 12;20(11):2719-2734
pubmed: 28903050
J Cachexia Sarcopenia Muscle. 2018 Feb;9(1):20-27
pubmed: 29193905
Exp Neurobiol. 2019 Apr;28(2):279-288
pubmed: 31138995
FASEB J. 2018 Jun 22;:fj201800597R
pubmed: 29932869
Ann Transl Med. 2016 Jun;4(12):236
pubmed: 27429962
JAMA Neurol. 2013 Aug;70(8):981-7
pubmed: 23797954
J Neurol Neurosurg Psychiatry. 2015 Aug;86(8):873-8
pubmed: 25430934
Eur Radiol. 2014 Jul;24(7):1610-20
pubmed: 24748539
Front Mol Neurosci. 2020 Jun 23;13:102
pubmed: 32655365
Neuromuscul Disord. 1991;1(2):93-7
pubmed: 1822787