Campylobacter jejuni ST50, a pathogen of global importance: A comparative genomic analysis of isolates from Australia, Europe and North America.


Journal

Zoonoses and public health
ISSN: 1863-2378
Titre abrégé: Zoonoses Public Health
Pays: Germany
ID NLM: 101300786

Informations de publication

Date de publication:
09 2021
Historique:
revised: 10 03 2021
received: 08 12 2020
accepted: 24 04 2021
pubmed: 28 5 2021
medline: 24 9 2021
entrez: 27 5 2021
Statut: ppublish

Résumé

Campylobacter jejuni is the leading cause of bacterial gastroenteritis globally, and infections are often transmitted through consumption of raw or undercooked poultry. Campylobacter jejuni ST50 is among the top ten sequence types (STs) reported in the collected isolates listed at PubMLST records from poultry, food and clinical sources for Asia, Europe, North America, Oceania and South America. This study was designed to determine the most commonly reported C. jejuni STs globally using the PubMLST database and assess similarities between genomes of C. jejuni ST50 isolates from geographically distinct locations. To gain a better understanding of C. jejuni diversity, we compared draft genome sequences of 182 ST50 isolates recovered from retail or caecal poultry samples in Oceania, Europe and North America that were collected over a period of 9 years (2010 to 2018). Overall, phylogenetic analysis revealed that isolates from geographically distinct locations tended to cluster based on the continent where the sample was collected. Among ST50 isolates from Europe and North America, we identified resistance determinants associated with phenotypic resistance to beta-lactams (EU: 55%; GB: 43.1%), tetracyclines (CA: 77.3%; EU: 37.5%; GB: 9.8%; US: 43.5%) and fluoroquinolones (EU: 60.0%; GB: 15.7%); no resistance determinants were identified in isolates from Australia. In general, the majority of the virulence genes, with rare exceptions such as wlaN, cj1138, hddA and rfbC, were evenly distributed throughout the genomes of all ST50 isolates in this study. Genomic-based characterization of C. jejuni ST50 isolates from poultry on three continents highlighted that geographically distinct isolates have evolved independently but only represent a glimpse into the diversity of C. jejuni.

Identifiants

pubmed: 34041858
doi: 10.1111/zph.12853
doi:

Substances chimiques

Anti-Bacterial Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

638-649

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Agunos, A., Léger, D. F., Carson, C. A., Gow, S. P., Bosman, A., Irwin, R. J., & Reid-Smith, R. J. (2017). Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015. PLoS One, 12(6), e0179384. https://doi.org/10.1371/journal.pone.0179384
Aidara-Kane, A., Angulo, F. J., Conly, J. M., Minato, Y. Silbergeld, E. K., McEwen, S. A., Collignon, P. J., & WHO Guideline Development Group. (2018). World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrobial Resistance and Infection Control, 7, 7. https://doi.org/10.1186/s13756-017-0294-9
Altekruse, S. F., Stern, N. J., Fields, P. I., & Swerdlow, D. L. (1999). Campylobacter jejuni-an emerging foodborne pathogen. Emerging Infectious Diseases, 5(1), 28-35. https://doi.org/10.3201/eid0501.990104
Australian Chicken Meat Federation. (2018). Surveillance for antimicrobial resistance in enteric commensals and pathogens in Australian meat chickens. Australian Chicken Meat Federation.
Australian Government Department of Health. (2020). National notifiable diseases surveillance system - Notification rate of campylobacteriosis. http://www9.health.gov.au/cda/source/cda-index.cfm
Burnham, P. M., & Hendrixson, D. R. (2018). Campylobacter jejuni: Collective components promoting a successful enteric lifestyle. Nature Reviews Microbiology, 16(9), 551-565. https://doi.org/10.1038/s41579-018-0037-9
Cantero, G., Correa-Fiz, F., Ronco, T., Strube, M., Cerdà-Cuéllar, M., & Pedersen, K. (2018). Characterization of Campylobacter jejuni and Campylobacter coli broiler isolates by whole-genome sequencing. Foodborne Pathogens and Disease, 15(3), 145-152. https://doi.org/10.1089/fpd.2017.2325
Chicken Farmers of Canada. (2020). Antibiotics. https://www.chickenfarmers.ca/antibiotics/
Colles, F. M., & Maiden, M. C. J. (2012). Campylobacter sequence typing databases: Applications and future prospects. Microbiology, 158(11), 2695-2709. https://doi.org/10.1099/mic.0.062000-0
Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E., & Gross, U. (2010). Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms. International Journal of Medical Microbiology, 300(4), 205-211. https://doi.org/10.1016/j.ijmm.2009.07.002
Dearlove, B. L., Cody, A. J., Pascoe, B., Meric, G., Wilson, D. J., & Sheppard, S. K. (2016). Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME Journal, 10(3), 721-729. https://doi.org/10.1038/ismej.2015.149
Diarra, M. S., & Malouin, F. (2014). Antibiotics in Canadian poultry productions and anticipated alternatives. Frontiers in Microbiology, 5, 282. https://doi.org/10.3389/fmicb.2014.00282
Dingle, K. E., Colles, F. M., Wareing, D. R. A., Ure, R., Fox, A. J., Bolton, F. E., Bootsma, H. J., Willems, R. J. L., Urwin, R., & Maiden, M. C. J. (2001). Multilocus sequence typing system for Campylobacter jejuni. Journal of Clinical Microbiology, 39(1), 14-23. https://doi.org/10.1128/jcm.39.1.14-23.2001
European Centre for Disease Prevention and Control. (2021). Surveillance atlas of infectious diseases. http://atlas.ecdc.europa.eu/public/index.aspx
Fiedoruk, K., Daniluk, T., Rozkiewicz, D., Oldak, E., Prasad, S., & Swiecicka, I. (2019). Whole-genome comparative analysis of Campylobacter jejuni strains isolated from patients with diarrhea in northeastern Poland. Gut Pathogens, 11, 32. https://doi.org/10.1186/s13099-019-0313-x
Food Standards Agency Scotland. (2015). i-CaMPS3 impact of interventions - Campylobacter MLST Project in Scotland. Food Standards Agency Scotland.
Forbes, K. H. J. (2009). The Molecular Epidemiology of Scottish Campylobacter isolates from human cases of infection using Multilocus Sequence Typing (MLST). Campylobacter MLST Project in Scotland (CaMPS).
Government of Canada. (2009). Categorization of antimicrobial drugs based on importance in human medicine. https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/antimicrobial-resistance/categorization-antimicrobial-drugs-based-importance-human-medicine.html
Hakanen, A., Jalava, J., Kotilainen, P., Jousimies-Somer, H., Siitonen, A., & Huovinen, P. (2002). gyrA polymorphism in Campylobacter jejuni: Detection of gyrA mutations in 162 C. jejuni isolates by single-strand conformation polymorphism and DNA sequencing. Antimicrobial Agents and Chemotherapy, 46(8), 2644-2647. https://doi.org/10.1128/aac.46.8.2644-2647.2002
Harvala, H., Rosendal, T., Lahti, E., Engvall, E. O., Brytting, M., Wallensten, A., & Lindberg, A. (2016). Epidemiology of Campylobacter jejuni infections in Sweden, November 2011-October 2012: is the severity of infection associated with C. jejuni sequence type? Infection Ecology & Epidemiology, 6(1), 31079. https://doi.org/10.3402/iee.v6.31079
Hermans, D., Van Deun, K., Martel, A. N., Van Immerseel, F., Messens, W., Heyndrickx, M., Haesebrouck, F., & Pasmans, F. (2011). Colonization factors of Campylobacter jejuni in the chicken gut. Veterinary Research, 42(1), 82. https://doi.org/10.1186/1297-9716-42-82
Horrocks, S. M., Anderson, R. C., Nisbet, D. J., & Ricke, S. C. (2009). Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe, 15(1), 18-25. https://doi.org/10.1016/j.anaerobe.2008.09.001
Joensen, K., Kiil, K., Gantzhorn, M., Nauerby, B., Engberg, J., Holt, H., & Nielsen, E. (2020). Whole-genome sequencing to detect numerous Campylobacter jejuni outbreaks and match patient isolates to sources, Denmark, 2015-2017. Emerging Infectious Disease Journal, 26(3), 523. https://doi.org/10.3201/eid2603.190947
Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Research, 3, 124. https://doi.org/10.12688/wellcomeopenres.14826.1
Kaakoush, N., Castaño-Rodríguez, N., Mitchell, H., & Man, S. (2015). Global epidemiology of Campylobacter infection. Clinical Microbiology Reviews, 28(3), 687-720. https://doi.org/10.1128/CMR.00006-15
Kim, J. S., Lee, M. Y., Kim, S. J., Jeon, S. E., Cha, I., Hong, S., & Kim, J. (2016). High-level ciprofloxacin-resistant Campylobacter jejuni isolates circulating in humans and animals in incheon, Republic of Korea. Zoonoses Public Health, 63(7), 545-554. https://doi.org/10.1111/zph.12262
Ladely, S. R., Meinersmann, R. J., Englen, M. D., Fedorka-Cray, P. J., & Harrison, M. A. (2009). 23S rRNA gene mutations contributing to macrolide resistance in Campylobacter jejuni and Campylobacter coli. Foodborne Pathog Dis, 6(1), 91-98. https://doi.org/10.1089/fpd.2008.0098
Lapierre, L., Gatica, M. A., Riquelme, V., Vergara, C., Yañez, J. M., San Martín, B., & Vidal, R. (2016). Characterization of antimicrobial susceptibility and its association with virulence genes related to adherence, invasion, and cytotoxicity in Campylobacter jejuni and Campylobacter coli isolates from animals, meat, and humans. Microbial Drug Resistance, 22(5), 432-444. https://doi.org/10.1089/mdr.2015.0055
Leekitcharoenphon, P., Garcia-Graells, C., Botteldoorn, N., Dierick, K., Kempf, I., Olkkola, S., Rossi, M., Nykäsenoja, S., Malorny, B., Stingl, K., Battisti, A., Franco, A., Mossong, J., Veldman, K., Mevius, D., Wasyl, D., Wieczorek, K., Osek, J., Clemente, L., … Aarestrup, F. M. (2018). Comparative genomics of quinolone-resistant and susceptible Campylobacter jejuni of poultry origin from major poultry producing European countries (GENCAMP). EFSA Supporting Publications, 15(5), 1398E. https://doi.org/10.2903/sp.efsa.2018.EN-1398
Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 47(W1), W256-W259. https://doi.org/10.1093/nar/gkz239
Marotta, F., Garofolo, G., di Marcantonio, L., Di Serafino, G., Neri, D., Romantini, R., Sacchini, L., Alessiani, A., Di Donato, G., Nuvoloni, R., Janowicz, A., & Di Giannatale, E. (2019). Antimicrobial resistance genotypes and phenotypes of Campylobacter jejuni isolated in Italy from humans, birds from wild and urban habitats, and poultry. PLoS One, 14(10), e0223804. https://doi.org/10.1371/journal.pone.0223804
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300
Nguyen, T. N. M., Hotzel, H., El-Adawy, H., Tran, H. T., Le, M. T. H., Tomaso, H., Neubauer, H., & Hafez, H. M. (2016). Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam. Gut Pathogens, 8(1), 19. https://doi.org/10.1186/s13099-016-0100-x
Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309-318. https://doi.org/10.1179/2047773215Y.0000000030
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70(1), e102. https://doi.org/10.1002/cpbi.102
Public Health Agency of Canada. (2018). FoodNet Canada Annual Report 2017 (2292-8073).
Public Health England. (2018). Zoonoses Report UK 2017. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/765111/UK_Zoonoses_report_2017.pdf
PubMLST. (2020). Campylobacter Sequence Typing. https://pubmlst.org/campylobacter/
Qin, S., Wang, Y., Zhang, Q., Zhang, M., Deng, F., Shen, Z., Wu, C., Wang, S., Zhang, J., & Shen, J. (2014). Report of ribosomal RNA methylase gene erm(B) in multidrug-resistant Campylobacter coli. Journal of Antimicrobial Chemotherapy, 69(4), 964-968. https://doi.org/10.1093/jac/dkt492
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug resistance updates, 3(6), 151-71. https://doi.org/10.1016/j.drup.2010.08.003
Revez, J., Zhang, J., Schott, T., Kivistö, R., Rossi, M., & Hänninen, M.-L. (2014). Genomic variation between Campylobacter jejuni isolates associated with milk-borne-disease outbreaks. Journal of Clinical Microbiology, 52(8), 2782. https://doi.org/10.1128/JCM.00931-14
Rokney, A., Valinsky, L., Moran-Gilad, J., Vranckx, K., Agmon, V., & Weinberger, M. (2018). Genomic epidemiology of Campylobacter jejuni transmission in Israel. Frontiers in Microbiology, 9, 2432. https://doi.org/10.3389/fmicb.2018.02432
Rosengren, L. B., Gow, S. P., & Weese, J. S. (2009). Antimicrobial use and resistance in pigs and chickens. A review of the science, policy, and control practices from farm to slaughter. The Canadian Journal of Infectious Diseases & Medical Microbiology, 21(3), 123-124.
Rosner, B. M., Schielke, A., Didelot, X., Kops, F., Breidenbach, J., Willrich, N., Gölz, G., Alter, T., Stingl, K., Josenhans, C., Suerbaum, S., & Stark, K. (2017). A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011-2014. Scientific Reports, 7(1), 5139. https://doi.org/10.1038/s41598-017-05227-x
Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science, 98(4), 1791-1804. https://doi.org/10.3382/ps/pey539
Sáenz, Y., Zarazaga, M., Lantero, M., Gastañares, M. J., Baquero, F., & Torres, C. (2000). Antibiotic resistance in Campylobacter strains isolated from animals, foods, and humans in Spain in 1997-1998. Antimicrobial Agents and Chemotherapy, 44(2), 267-271. https://doi.org/10.1128/AAC.44.2.267-271.2000
Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
Singer, R. S., & Porter, L. (2019). Estimates of on-farm antimicrobial usage in broiler chicken and turkey production in the United States, 2013 - 2017. http://mindwalkconsultinggroup.com/poultry_on-farm_antimicrobial_use_2013-2017
Skarp, C. P. A., Akinrinade, O., Nilsson, A. J. E., Ellström, P., Myllykangas, S., & Rautelin, H. (2015). Comparative genomics and genome biology of invasive Campylobacter jejuni. Scientific Reports, 5, 17300. https://doi.org/10.1038/srep17300
Tack, D. M., Marder, E. P., Griffin, P. M., Cieslak, P. R., Dunn, J., Hurd, S., Scallan, E., Lathrop, S., Muse, A., Ryan, P., Smith, K., Tobin-D’Angelo, M., Vugia, D. J., Holt, K. G., Wolpert, B. J., Tauxe, R., & Geissler, A. L. (2019). Preliminary incidence and trends of infections with pathogens transmitted commonly through food - Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2015-2018. MMWR. Morbidity and Mortality Weekly Report, 68(16), 369-373. https://doi.org/10.15585/mmwr.mm6816a2
Thakur, S., Zhao, S., McDermott, P. F., Harbottle, H., Abbott, J., English, L., & White, D. G. (2010). Antimicrobial resistance, virulence, and genotypic profile comparison of Campylobacter jejuni and Campylobacter coli isolated from humans and retail meats. Foodborne Pathogens and Disease, 7(7), 835-844. https://doi.org/10.1089/fpd.2009.0487
The European Food Safety Authority. (2019a). The European Union One Health 2018 Zoonoses Report. EFSA Journal, 17(12), e05926. https://doi.org/10.2903/j.efsa.2019.5926
The European Food Safety Authority. (2019b). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA Journal, 17(2), e05598. https://doi.org/10.2903/j.efsa.2019.5598
The National Antimicrobial Resistance Monitoring System. (2016). Methods - The National Antimicrobial Resistance Monitoring System: Enteric Bacteria. https://www.fda.gov/media/101741/download
The World Health Organization. (2015). WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. WHO.
The World Health Organization. (2017). Critically important antimicrobials for human medicine, 5th revision. WHO.
Varrone, L., Stafford, R. J., Lilly, K., Selvey, L., Glass, K., Ford, L., & Kirk, M. D. (2018). Investigating locally relevant risk factors for Campylobacter infection in Australia: Protocol for a case-control study and genomic analysis. British Medical Journal Open, 8(12), e026630. https://doi.org/10.1136/bmjopen-2018-026630
Walker, L. J., Wallace, R. L., Smith, J. J., Graham, T., Saputra, T., Symes, S., Stylianopoulos, A., Polkinghorne, B. G., Kirk, M. D., & Glass, K. (2019). Prevalence of Campylobacter coli and Campylobacter jejuni in retail chicken, beef, lamb, and pork products in three Australian States. Journal of Food Protection, 82(12), 2126-2134. https://doi.org/10.4315/0362-028X.JFP-19-146
Wallace, R. L., Bulach, D. M., Jennison, A. V., Valcanis, M., McLure, A., Smith, J. J., Graham, T., Saputra, T., Firestone, S., Symes, S., Waters, N., Stylianopoulos, A., Kirk, M. D., & Glass, K. (2020). Molecular characterization of Campylobacter spp. recovered from beef, chicken, lamb and pork products at retail in Australia. PLoS One, 15(7). https://doi.org/10.1371/journal.pone.0236889
Wallace, R., Bulach, D., McLure, A., Varrone, L., Jennison, A., Valcanis, M., Smith, J. J., Polkinghorne, B. G., Glass, K., & Kirk, M. D. (2020). Antimicrobial resistance of campylobacter spp. causing human infection in Australia: An International Comparison. Microbial Drug Resistance, 27(4), 518-528. https://doi.org/10.1089/mdr.2020.0082
Whitehouse, C. A., Young, S., Li, C., Hsu, C.-H., Martin, G., & Zhao, S. (2018). Use of whole-genome sequencing for Campylobacter surveillance from NARMS retail poultry in the United States in 2015. Food Microbiology, 73, 122-128. https://doi.org/10.1016/j.fm.2018.01.018
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. https://ggplot2.tidyverse.org
Wieczorek, K., Wołkowicz, T., & Osek, J. (2018). Antimicrobial resistance and virulence-associated traits of Campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Frontiers in Microbiology, 9, 1508. https://doi.org/10.3389/fmicb.2018.01508
Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46
Zeng, X., Brown, S., Gillespie, B., & Lin, J. (2014). A single nucleotide in the promoter region modulates the expression of the beta-lactamase OXA-61 in Campylobacter jejuni. Journal of Antimicrobial Chemotherapy, 69(5), 1215-1223. https://doi.org/10.1093/jac/dkt515
Zhao, S., Tyson, G. H., Chen, Y., Li, C., Mukherjee, S., Young, S., Lam, C., Folster, J. P., Whichard, J. M., & McDermott, P. F. (2016). Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Applied and Environment Microbiology, 82(2), 459-466. https://doi.org/10.1128/aem.02873-15

Auteurs

Rhiannon L Wallace (RL)

National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.

Danielle M Cribb (DM)

National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.

Dieter M Bulach (DM)

Melbourne Bioinformatics, The University of Melbourne, Carlton, Vic., Australia.
Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic., Australia.

Danielle J Ingle (DJ)

National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.
Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic., Australia.

Katrine G Joensen (KG)

Statens Serum Institut, Copenhagen, Denmark.

Eva Møller Nielsen (EM)

Statens Serum Institut, Copenhagen, Denmark.

Pimlapas Leekitcharoenphon (P)

Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.

Kerstin Stingl (K)

Department of Biological Safety, German Federal Institute for Risk Assessment, National Reference Laboratory for Campylobacter, Berlin, Germany.

Martyn D Kirk (MD)

National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Classifications MeSH