Lipid Analysis by Gas Chromatography and Gas Chromatography-Mass Spectrometry.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 28 5 2021
pubmed: 29 5 2021
medline: 23 6 2021
Statut: ppublish

Résumé

Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) represent powerful tools for the quantitative and structural analysis of plant lipids. Here, we outline protocols for the isolation, separation, and derivatization of plant lipids for subsequent GC and GC-MS analysis. Plant lipids are extracted with organic solvents and separated according to their polarity by thin-layer chromatography or solid phase extraction. As most lipids are not volatile, the analytes are derivatized by transmethylation or trimethylsilylation to enable the transition of the molecules into the gas phase. After separation on the polymer matrix of the GC column, the analytes are detected by flame ionization or mass spectrometry. This chapter includes methods suitable for the analysis of lipid-bound or free fatty acids, long chain alcohols, and monoacylglycerols and for the determination of double bond positions in fatty acids.

Identifiants

pubmed: 34047971
doi: 10.1007/978-1-0716-1362-7_4
doi:

Substances chimiques

Fatty Acids 0
Fatty Acids, Nonesterified 0
Lipids 0
Membrane Lipids 0
Solvents 0
Glycerol PDC6A3C0OX

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

43-57

Références

James AT, Martin AJP (1952) Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J 50:679–690. https://doi.org/10.1042/bj0500679
doi: 10.1042/bj0500679 pubmed: 14934673 pmcid: 1197726
McNair H, Miller J (1997) Basic gas chromatography. Wiley, Hoboken, ISBN 0-471-17261-8
Bartle KD, Myers P (2002) History of gas chromatography. Trends Analyt Chem 21(9–10):547–557. https://doi.org/10.1016/S0165-9936(02)00806-3
doi: 10.1016/S0165-9936(02)00806-3
Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157(1–2):414–421. https://doi.org/10.1016/j.chroma.2007.05.044
doi: 10.1016/j.chroma.2007.05.044 pubmed: 17543315
Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281(5):2470–2477. https://doi.org/10.1074/jbc.M509222200
doi: 10.1074/jbc.M509222200 pubmed: 16306049
Destaillats F, Cruz-Hernandez C, Nagy K, Dionisi F (2010) Identification of monoacylglycerol regio-isomers by gas chromatography-mass spectrometry. J Chromat B 1217:1543–1548. https://doi.org/10.1016/j.chroma.2010.01.016
doi: 10.1016/j.chroma.2010.01.016
Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145. https://doi.org/10.1016/0003-2697(86)90132-6
doi: 10.1016/0003-2697(86)90132-6 pubmed: 3954036
de Saint Laumer J, Leocata S, Tissot E, Baroux L, Kampf DM, Merle P, Boschung A, Seyfried M, Chaintreau A (2015) Prediction of response factors for gas chromatography with flame ionization detection: algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites. J Sep Sci 38(18):3209–3217. https://doi.org/10.1002/jssc.201500106
doi: 10.1002/jssc.201500106 pubmed: 26179324 pmcid: 5049641
Francis GW (1981) Alkylthiolation for the determination of double-bond position in unsaturated fatty acid esters. Chem Phys Lipids 29:369–374. https://doi.org/10.1016/0009-3084(81)90070-0
doi: 10.1016/0009-3084(81)90070-0
Weston R, Derner JD, Murrieta CM, Rule CD, Hess BW (2006) Comparison of catalysts for direct transesterification of fatty acids in freeze dried forage samples. Crop Sci 48:1636–1641. https://doi.org/10.2135/cropsci2007.07.0376sc
doi: 10.2135/cropsci2007.07.0376sc
Christie WW (1993) In: Christie WW (ed) Preparation of ester derivatives of fatty acids for chromatographic analysis. Advances in lipid methodology-two. Oily Press, Dundee
Morrison WR, Smith LM (1964) Preparation of FAMEs and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5(4):600–608
doi: 10.1016/S0022-2275(20)40190-7
Luddy FE, Barford RA, Rimenschneider RW (1960) Direct conversion of lipid components to their fatty acid methyl esters. J Am Oil Chem Soc 37:447–451. https://doi.org/10.1007/BF02631205
doi: 10.1007/BF02631205
Schlenk H, Gellermann JL (1960) Esterification of fatty acids with diazomethane on a small scale. Anal Chem 32(11):1412–1414. https://doi.org/10.1021/ac60167a011
doi: 10.1021/ac60167a011

Auteurs

Mathias Brands (M)

Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany.

Philipp Gutbrod (P)

Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany.

Peter Dörmann (P)

Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany. doermann@uni-bonn.de.

Articles similaires

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals
Glycine max Seeds Transcription Factors Gene Expression Regulation, Plant Plant Proteins
Soil Charcoal Nutrients Manure Nitrogen
Humans Insulin Resistance Muscle, Skeletal Oxidative Stress Oxidation-Reduction

Classifications MeSH