Analysis of Free and Esterified Sterol Content and Composition in Seeds Using GC and ESI-MS/MS.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 28 5 2021
pubmed: 29 5 2021
medline: 23 6 2021
Statut: ppublish

Résumé

Total sterol content and composition in plant tissues can be easily determined by gas chromatography (GC) after saponification of the total lipid extract. However, in oleogenic tissues a significant proportion of the sterol is esterified to fatty acids, with GC methodologies unable to provide information about the proportion and the molecular species composition of intact steryl esters (SEs). Here we describe an electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and Multiple Reaction Monitoring (MRM) method which, in parallel with GC analysis, allows for the accurate determination of both free and esterified sterol content and composition in seeds. After extraction of seed oil with hexane, free sterols are derivatized with undecanoyl chloride, total steryl esters are then purified from triacylglycerol (TAG) by liquid chromatography, infused and ionized as ammonium adducts, with molecular species identified and quantified by fragmentation in the presence of internal standards.

Identifiants

pubmed: 34047978
doi: 10.1007/978-1-0716-1362-7_11
doi:

Substances chimiques

Esters 0
Fatty Acids 0
Glycosphingolipids 0
Lipids 0
Phytosterols 0
Sterols 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

179-201

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/L002124/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P012663/1
Pays : United Kingdom

Références

Hallikainen MA, Sarkkinen ES, Uusitupa MIJ (2000) Plant stanol esters affect serum cholesterol concentrations of hypercholesterolemic men and women in a dose-dependent manner. J Nutr 130:767–776. https://doi.org/10.1093/jn/130.4.767
doi: 10.1093/jn/130.4.767 pubmed: 10736328
Nestel P, Cehun M, Pomeroy S, Abbey M, Weldon G (2001) Cholesterol-lowering effects of plant sterol esters and non-esterified stanols in margarine, butter and low-fat foods. Eur J Clin Nutr 55:1084–1090. https://doi.org/10.1038/sj.ejcn.1601837
doi: 10.1038/sj.ejcn.1601837 pubmed: 11781675
Winkler-Moser J (2011) Gas chromatographic analysis of plant sterols. https://doi.org/10.21748/lipidlibrary.40384
Costin CD, Hansen SL, Chambers DP (2009) Using theoretical correction factors for quantitative analysis of sterols and sterol concentrates. J Am Oil Chem Soc 86:111–118. https://doi.org/10.1007/s11746-008-1332-9
doi: 10.1007/s11746-008-1332-9
Yang K, Han X (2011) Accurate quantification of lipid species by electrospray ionization mass spectrometry – meets a key challenge in lipidomics. Meta 1:21–40. https://doi.org/10.3390/metabo1010021
doi: 10.3390/metabo1010021
Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94:2339–2344. https://doi.org/10.1073/pnas.94.6.2339
doi: 10.1073/pnas.94.6.2339 pubmed: 9122196 pmcid: 20089
Wewer V, Dombrink I, vom Dorp K, Dörmann P (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lip Res 52:1039–1054. https://doi.org/10.1194/jlr.D013987
doi: 10.1194/jlr.D013987
Broughton R, Ruíz-Lopez N, Hassall KL, Martínez-Force E, Garcés R, Salas JJ, Beaudoin F (2018) New insights in the composition of wax and sterol esters in common and mutant sunflower oils revealed by ESI-MS/MS. Food Chem 269:70–79. https://doi.org/10.1016/j.foodchem.2018.06.135
doi: 10.1016/j.foodchem.2018.06.135 pubmed: 30100486
Ruiz-Lopez N, Broughton R, Usher S, Haslam R, Napier JA, Beaudoin F (2017) Tailoring the composition of wax esters in the seeds of transgenic Camelina sativa through systematic metabolic engineering. Plant Biotechnol J 15:837–849. https://doi.org/10.1111/pbi.12679
doi: 10.1111/pbi.12679 pubmed: 27990737 pmcid: 5466440
Ramaley L (2006) Isopatrn. Dalhousie University, Halifax. http://tarc.chemistry.dal.ca/IsoPatrn_down.htm

Auteurs

Richard Broughton (R)

Institute of Aquaculture, University of Stirling, Stirling, UK.

Frédéric Beaudoin (F)

Plant Sciences Department, Rothamsted Research, Harpenden, UK. frederic.beaudoin@rothamsted.ac.uk.

Articles similaires

Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Humans Arthritis, Rheumatoid Lipid Metabolism Male Female
Rhizosphere Glycine max Seeds Soybean Oil Soil Microbiology

Classifications MeSH