Attaining the promise of plant gene editing at scale.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
01 06 2021
Historique:
entrez: 29 5 2021
pubmed: 30 5 2021
medline: 1 12 2021
Statut: ppublish

Résumé

Crop improvement relies heavily on genetic variation that arises spontaneously through mutation. Modern breeding methods are very adept at combining this genetic variation in ways that achieve remarkable improvements in plant performance. Novel traits have also been created through mutation breeding and transgenesis. The advent of gene editing, however, marks a turning point: With gene editing, synthetic variation will increasingly supplement and, in some cases, supplant the genetic variation that occurs naturally. We are still in the very early stages of realizing the opportunity provided by plant gene editing. At present, typically only one or a few genes are targeted for mutation at a time, and most mutations result in loss of gene function. New technological developments, however, promise to make it possible to perform gene editing at scale. RNA virus vectors, for example, can deliver gene-editing reagents to the germ line through infection and create hundreds to thousands of diverse mutations in the progeny of infected plants. With developmental regulators, edited somatic cells can be induced to form meristems that yield seed-producing shoots, thereby increasing throughput and shrinking timescales for creating edited plants. As these approaches are refined and others developed, they will allow for accelerated breeding, the domestication of orphan crops and the reengineering of metabolism in a more directed manner than has ever previously been possible.

Identifiants

pubmed: 34050019
pii: 2004846117
doi: 10.1073/pnas.2004846117
pmc: PMC8179185
pii:
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Review

Langues

eng

Sous-ensembles de citation

IM

Déclaration de conflit d'intérêts

The authors declare no competing interest.

Références

PLoS One. 2016 Jul 27;11(7):e0159668
pubmed: 27462984
In Vitro Cell Dev Biol Plant. 2018;54(3):240-252
pubmed: 29780216
Cell. 2017 Oct 5;171(2):470-480.e8
pubmed: 28919077
Cell Biosci. 2017 Apr 24;7:21
pubmed: 28451378
Int J Plant Genomics. 2011;2011:314829
pubmed: 22315587
Nat Biotechnol. 2021 Jan;39(1):41-46
pubmed: 32690971
Mol Plant. 2017 Jun 5;10(6):782-784
pubmed: 28478095
Genetics. 2011 Aug;188(4):773-82
pubmed: 21828278
Nat Plants. 2020 Jun;6(6):620-624
pubmed: 32483329
Plant Physiol. 2017 Sep;175(1):23-35
pubmed: 28663331
Plant J. 2004 Sep;39(5):734-46
pubmed: 15315635
Science. 2017 Jan 27;355(6323):391-394
pubmed: 28126817
Trends Plant Sci. 2007 Jun;12(6):245-52
pubmed: 17499544
Trends Biotechnol. 2018 Sep;36(9):882-897
pubmed: 29703583
Nat Biotechnol. 2018 Oct 01;:
pubmed: 30272678
Biol Rev Camb Philos Soc. 2017 Feb;92(1):188-198
pubmed: 26456883
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Front Plant Sci. 2019 Aug 30;10:1055
pubmed: 31543887
Annu Rev Cell Dev Biol. 2018 Oct 6;34:289-310
pubmed: 30134119
Nat Commun. 2019 Aug 23;10(1):3810
pubmed: 31444327
Plant Cell. 2016 Jul;28(7):1510-20
pubmed: 27335450
Annu Rev Plant Biol. 2019 Apr 29;70:667-697
pubmed: 30835493
Annu Rev Biochem. 2019 Jun 20;88:137-162
pubmed: 31220977
Plant Cell Rep. 2017 Sep;36(9):1477-1491
pubmed: 28681159
Theor Appl Genet. 2016 Sep;129(9):1639-55
pubmed: 27381849
New Phytol. 2019 Sep;223(4):2120-2133
pubmed: 31059138
Nat Genet. 2014 Mar;46(3):270-8
pubmed: 24441736
Sci Rep. 2016 Oct 19;6:34121
pubmed: 27756914
Nat Biotechnol. 2021 Jan;39(1):35-40
pubmed: 32690970
Nat Protoc. 2007;2(7):1614-21
pubmed: 17585302
Nat Cell Biol. 2019 Dec;21(12):1468-1478
pubmed: 31792376
Ann Bot. 2016 Jul;118(1):35-51
pubmed: 27245634
Annu Rev Plant Biol. 2018 Apr 29;69:577-609
pubmed: 29489392
PLoS One. 2014 May 07;9(5):e96879
pubmed: 24804838
Trends Plant Sci. 2019 Feb;24(2):109-120
pubmed: 30630668
Plant Cell. 2016 Sep;28(9):1998-2015
pubmed: 27600536
Mol Plant. 2015 Aug;8(8):1288-91
pubmed: 25749112
Science. 2019 Nov 8;366(6466):
pubmed: 31488704
Nature. 2019 Dec;576(7785):149-157
pubmed: 31634902
Nat Biotechnol. 2020 Jan;38(1):84-89
pubmed: 31844292
Planta. 2019 Sep;250(3):677-694
pubmed: 31190115
Nature. 2017 Nov 23;551(7681):464-471
pubmed: 29160308
Virus Res. 2018 Jan 15;244:333-337
pubmed: 29051052
Nat Biotechnol. 2018 Oct 01;:
pubmed: 30272676
Nat Rev Genet. 2013 Dec;14(12):840-52
pubmed: 24240513
Nucleic Acids Res. 2017 Nov 2;45(19):e164
pubmed: 28977556
Nat Plants. 2018 Oct;4(10):766-770
pubmed: 30287957
Nat Biotechnol. 2000 Apr;18(4):455-7
pubmed: 10748531
Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):557-72
pubmed: 17715053
Science. 2011 Sep 30;333(6051):1843-6
pubmed: 21960622
Nat Biotechnol. 2020 May;38(5):582-585
pubmed: 32393904
Nature. 2016 Apr 20;533(7603):420-4
pubmed: 27096365
Curr Opin Biotechnol. 2013 Apr;24(2):285-90
pubmed: 23219185
Curr Opin Plant Biol. 2019 Apr;48:1-8
pubmed: 30579050
Cell. 2014 Jun 5;157(6):1262-1278
pubmed: 24906146
In Vitro. 1972 Nov-Dec;8(3):117-27
pubmed: 4568172
Front Plant Sci. 2017 Aug 07;8:1302
pubmed: 28824660
Science. 2014 Nov 28;346(6213):1258096
pubmed: 25430774
J Biomed Biotechnol. 2006;2006(2):25376
pubmed: 16883050
Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37, table of contents
pubmed: 12626681
DNA Repair (Amst). 2016 Aug;44:6-16
pubmed: 27261202
Cell. 2006 Dec 29;127(7):1309-21
pubmed: 17190597
Plant Biotechnol J. 2014 Sep;12(7):934-40
pubmed: 24851712
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5222-6
pubmed: 8202472
Mol Plant Pathol. 2019 Oct;20(10):1463-1474
pubmed: 31273916

Auteurs

Ryan A Nasti (RA)

Department of Genetics, Cell Biology and Development, Center for Genome Engineering, Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108.

Daniel F Voytas (DF)

Department of Genetics, Cell Biology and Development, Center for Genome Engineering, Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108 voytas@umn.edu.

Articles similaires

Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Zea mays Triticum China Seasons Crops, Agricultural

Classifications MeSH