Ultra-high-performance liquid chromatography charge transfer dissociation mass spectrometry (UHPLC-CTD-MS) as a tool for analyzing the structural heterogeneity in carrageenan oligosaccharides.
Charge transfer dissociation
High-energy activation
Highly sulfated oligosaccharides
Ion-pair reagent
Radical ion fragmentation
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
08
02
2021
accepted:
07
05
2021
revised:
16
04
2021
pubmed:
30
5
2021
medline:
18
3
2022
entrez:
29
5
2021
Statut:
ppublish
Résumé
Ultra-high-performance liquid chromatography (UHPLC) with charge transfer dissociation mass spectrometry (CTD-MS) is presented for the analysis of a mixture of complex sulfated oligosaccharides. The mixture contained kappa (κ), iota (ι), and lambda (λ) carrageenans that contain anhydro bridges, different degrees of sulfation ranging from one to three per dimer, different positioning of the sulfate groups along the backbone, and varying degrees of polymerization (DP) between 4 and 12. Optimization studies using standard mixtures of carrageenans helped establish the optimal conditions for online UHPLC-CTD-MS/MS analysis. Optimization included (1) UHPLC conditions; (2) ion source conditions, such as the capillary voltage, drying gas and nebulizing gas temperature, and flow rate; and (3) CTD-MS conditions, including data-dependent CTD-MS. The UHPLC-CTD results were contrasted with UHPLC-CID results of the same mixture on the same instrument. Whereas CID tends to produce B/Y and C/Z ions with many neutral losses, CTD produced more abundant A/X ions and less abundant neutral losses, which enabled more confident structural detail. The results demonstrate that He-CTD is compatible with the timescale of UHPLC and provides more structural information about carrageenans compared to state-of-the-art methods like UHPLC-CID analysis.
Identifiants
pubmed: 34050776
doi: 10.1007/s00216-021-03396-3
pii: 10.1007/s00216-021-03396-3
doi:
Substances chimiques
Oligosaccharides
0
Carrageenan
9000-07-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
303-318Subventions
Organisme : NIH HHS
ID : R01GM114494
Pays : United States
Organisme : National Science Foundation
ID : CHE-1710376
Organisme : NIH HHS
ID : R01GM114494
Pays : United States
Informations de copyright
© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ropartz D, Lemoine J, Giuliani A, Bittebière Y, Enjalbert Q, Antoine R, et al. Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment. Anal Chim Acta. 2014;807:84–95. https://doi.org/10.1016/j.aca.2013.11.018 .
doi: 10.1016/j.aca.2013.11.018
pubmed: 24356224
Antonopoulos A, Favetta P, Helbert W, Lafosse M. Isolation of κ-carrageenan oligosaccharides using ion-pair liquid chromatography - characterisation by electrospray ionisation mass spectrometry in positive-ion mode. Carbohydr Res. 2004;339:1301–9. https://doi.org/10.1016/j.carres.2004.03.002 .
doi: 10.1016/j.carres.2004.03.002
pubmed: 15113667
Campo VL, Kawano DF, Braz D, Carvalho I. Carrageenans : biological properties , chemical modifications and structural analysis – a review. Carbohydr Polym 2009;77:167–180. https://doi.org/10.1016/j.carbpol.2009.01.020 .
Campbell R, Hotchkiss S. Carrageenan industry market overview. In: Hurtado AQ, Critchley AT, Neish IC, editors. Trop. Seaweed Farming Trends, Probl. Oppor., Cham: Springer International Publishing; 2017, p. 193–205. https://doi.org/10.1007/978-3-319-63498-2_13 .
Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydr Polym. 2014;103:1–11. https://doi.org/10.1016/j.carbpol.2013.12.008 .
doi: 10.1016/j.carbpol.2013.12.008
pubmed: 24528694
Yermak IM, Barabanova AO, Aminin DL, Davydova VN, Sokolova EV, Solov’Eva TF, et al. Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. Carbohydr Polym. 2012;87:713–20. https://doi.org/10.1016/j.carbpol.2011.08.053 .
doi: 10.1016/j.carbpol.2011.08.053
pubmed: 34663026
Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD. Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac J Clin Nutr. 2003;12:209–14.
pubmed: 12810413
Cáceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zúñiga EA. Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry. 2000;53:81–6. https://doi.org/10.1016/S0031-9422(99)00461-6 .
doi: 10.1016/S0031-9422(99)00461-6
pubmed: 10656412
Sun Y, Liu Y, Jiang K, Wang C, Wang Z, Huang L. Electrospray ionization mass spectrometric analysis of κ-carrageenan oligosaccharides obtained by degradation with κ-carrageenase from Pedobacter hainanensis. J Agric Food Chem. 2014;62:2398–405. https://doi.org/10.1021/jf500429r .
doi: 10.1021/jf500429r
pubmed: 24606162
Girond S, Crance JM, Van Cuyck-Gandre H, Renaudet J, Deloince R. Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Res Virol. 1991;142:261–70. https://doi.org/10.1016/0923-2516(91)90011-Q .
doi: 10.1016/0923-2516(91)90011-Q
pubmed: 1665574
Talarico LB, Zibetti RGM, Faria PCS, Scolaro LA, Duarte MER, Noseda MD, et al. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int J Biol Macromol. 2004;34:63–71. https://doi.org/10.1016/j.ijbiomac.2004.03.002 .
doi: 10.1016/j.ijbiomac.2004.03.002
pubmed: 15178011
Ana P, Nathalie B, Gilles B, Daniel R, Tomás M, Yolanda F. Anti-herpes simplex virus (HSV-1) activity and antioxidant capacity of carrageenan-rich enzymatic extracts from Solieria filiformis (Gigartinales, Rhodophyta). Int J Biol Macromol. 2021;168:322–30. https://doi.org/10.1016/j.ijbiomac.2020.12.064 .
doi: 10.1016/j.ijbiomac.2020.12.064
pubmed: 33310095
Wang W, Zhang P, Yu GL, Li CX, Hao C, Qi X, et al. Preparation and anti-influenza A virus activity of κ-carrageenan oligosaccharide and its sulphated derivatives. Food Chem. 2012;133:880–8. https://doi.org/10.1016/j.foodchem.2012.01.108 .
doi: 10.1016/j.foodchem.2012.01.108
Jang Y, Shin H, Lee MK, Kwon OS, Shin JS, Kim Y il, et al. Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci Rep. 2021;11:1–12. https://doi.org/10.1038/s41598-020-80896-9 .
doi: 10.1038/s41598-020-80896-9
Talarico LB, Damonte EB. Interference in dengue virus adsorption and uncoating by carrageenans. Virology. 2007;363:473–85. https://doi.org/10.1016/j.virol.2007.01.043 .
doi: 10.1016/j.virol.2007.01.043
pubmed: 17337028
Piccini LE, Carro AC, Quintana VM, Damonte EB. Antibody-independent and dependent infection of human myeloid cells with dengue virus is inhibited by carrageenan. Virus Res. 2020;290:198150. https://doi.org/10.1016/j.virusres.2020.198150 .
doi: 10.1016/j.virusres.2020.198150
pubmed: 32866533
Ropartz D, Li P, Jackson GP, Rogniaux H. Negative polarity helium charge transfer dissociation tandem mass spectrometry: radical-initiated fragmentation of complex polysulfated anions. Anal Chem. 2017;89(7):3824–8. https://doi.org/10.1021/acs.analchem.7b00473 .
doi: 10.1021/acs.analchem.7b00473
pubmed: 28300396
Antonopoulos A, Favetta P, Helbert W, Lafosse M. On-line liquid chromatography-electrospray ionisation mass spectrometry for κ-carrageenan oligosaccharides with a porous graphitic carbon column. J Chromatogr A. 2007;1147:37–41. https://doi.org/10.1016/j.chroma.2007.02.023 .
doi: 10.1016/j.chroma.2007.02.023
pubmed: 17336315
Ackloo S, Terlouw JK, Ruttink PJA, Burgers PC. Analysis of carrageenans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. I kappa-Carrageenans Rapid Commun Mass Spectrom. 2001;15:1152–9. https://doi.org/10.1002/rcm.351 .
doi: 10.1002/rcm.351
pubmed: 11445896
Zaia J. On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom Rev. 2009;28:254–72. https://doi.org/10.1002/mas.20200 .
doi: 10.1002/mas.20200
pubmed: 18956477
pmcid: 4119066
Pepi LE, Sasiene ZJ, Mendis PM, Jackson GP, Amster IJ. Structural characterization of sulfated glycosaminoglycans using charge-transfer dissociation. J Am Soc Mass Spectrom. 2020. https://doi.org/10.1021/jasms.0c00252 .
Aguilan JT, Dayrit FM, Zhang J, Ninonuevo MR, Lebrilla CB. Structural analysis of k-carrageenan sulfated oligosaccharides by positive mode Nano-ESI-FTICR-MS and MS/MS by SORI-CID. J Am Soc Mass Spectrom. 2006;17:96–103. https://doi.org/10.1016/j.jasms.2005.09.009 .
doi: 10.1016/j.jasms.2005.09.009
pubmed: 16352442
Guibet M, Kervarec N, Génicot S, Chevolot Y, Helbert W. Complete assignment of 1H and 13C NMR spectra of Gigartina skottsbergii λ-carrageenan using carrabiose oligosaccharides prepared by enzymatic hydrolysis. Carbohydr Res. 2006;341:1859–69. https://doi.org/10.1016/j.carres.2006.04.018 .
doi: 10.1016/j.carres.2006.04.018
pubmed: 16716278
Chauhan PS, Saxena A. Bacterial carrageenases: an overview of production and biotechnological applications. 3. Biotech. 2016;6:146. https://doi.org/10.1007/s13205-016-0461-3 .
doi: 10.1007/s13205-016-0461-3
Yu G, Guan H, Ioanoviciu AS, Sikkander SA, Thanawiroon C, Tobacman JK, et al. Structural studies on κ-carrageenan derived oligosaccharides. Carbohydr Res. 2002;337:433–40. https://doi.org/10.1016/S0008-6215(02)00009-5 .
doi: 10.1016/S0008-6215(02)00009-5
pubmed: 11861017
Antonopoulos A, Herbreteau B, Lafosse M, Helbert W. Comparative analysis of enzymatically digested κ-carrageenans, using liquid chromatography on ion-exchange and porous graphitic carbon columns coupled to an evaporative light scattering detector. J Chromatogr A. 2004;1023:231–8. https://doi.org/10.1016/j.chroma.2003.10.011 .
doi: 10.1016/j.chroma.2003.10.011
pubmed: 14753689
Ekeberg D, Knutsen SH, Sletmoen M. Negative-ion ESI–MS as a tool for analysing structural heterogeneity in kappa-carrageenan oligosaccharides. Carbohydr Res. 2001;334:49–59.
doi: 10.1016/S0008-6215(01)00161-6
Han L, Costello CE. Mass spectrometry of glycans. Biochem. 2013;78:710–20. https://doi.org/10.1134/s0006297913070031 .
doi: 10.1134/s0006297913070031
Wuhrer M, Deelder AM, van der Burgt YEM. Mass spectrometric glycan rearrangements. Mass Spectrom Rev. 2011;30:664–80. https://doi.org/10.1002/mas.20337 .
doi: 10.1002/mas.20337
pubmed: 21560141
Zaia J, Miller MJC, Seymour JL, Costello CE. The role of mobile protons in negative ion CID of oligosaccharides. J Am Soc Mass Spectrom. 2007;18:952–60. https://doi.org/10.1016/j.jasms.2007.01.016 .
doi: 10.1016/j.jasms.2007.01.016
pubmed: 17383193
pmcid: 1964798
Zaia J, McClellan JE, Costello CE. Tandem mass spectrometric determination of the 4S/6S sulfation sequence in chondroitin sulfate oligosaccharides. Anal Chem. 2001;73:6030–9. https://doi.org/10.1021/ac015577t .
doi: 10.1021/ac015577t
pubmed: 11791576
Ropartz D, Li P, Fanuel M, Giuliani A, Rogniaux H, Jackson GP. Charge transfer dissociation of complex oligosaccharides: comparison with collision-induced dissociation and extreme ultraviolet dissociative photoionization. J Am Soc Mass Spectrom. 2016;27:1614–9. https://doi.org/10.1007/s13361-016-1453-6 .
doi: 10.1007/s13361-016-1453-6
pubmed: 27582116
Wolff JJ, Amster IJ, Chi L, Linhardt RJ. Electron detachment dissociation of glycosaminoglycan tetrasaccharides. J Am Soc Mass Spectrom. 2007;18:234–44. https://doi.org/10.1016/j.jasms.2006.09.020 .
doi: 10.1016/j.jasms.2006.09.020
pubmed: 17074503
Wolff JJ, Chi L, Linhardt RJ, Amster IJ. Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation. Anal Chem. 2007;79:2015–22. https://doi.org/10.1021/ac061636x .
doi: 10.1021/ac061636x
pubmed: 17253657
pmcid: 2586617
Leach lll FE, Riley NM, Westphall MS, Coon JJ, Amster IJ. Negative electron transfer dissociation sequencing of increasingly sulfated glycosaminoglycan oligosaccharides on an Orbitrap mass spectrometer. J Am Soc Mass Spectrom 2017;28:1844–1854. https://doi.org/10.1007/s13361-017-1709-9 .
Liu H, Hakansson K. Electron capture dissociation of divalent metal-adducted sulfated oligosaccharides. Int J Mass Spectrom. 2011;305:170–7. https://doi.org/10.1016/j.ijms.2010.10.030 .
doi: 10.1016/j.ijms.2010.10.030
Wolff JJ, Laremore TN, Aslam H, Linhardt RJ, Amster IJ. Electron-induced dissociation of glycosaminoglycan tetrasaccharides. J Am Soc Mass Spectrom. 2008;19:1449–58. https://doi.org/10.1016/j.jasms.2008.06.024 .
doi: 10.1016/j.jasms.2008.06.024
pubmed: 18657442
pmcid: 2716736
Leach lll FE, Ly M, Laremore TN, Wolff JJ, Perlow J, Linhardt RJ, et al. Hexuronic acid stereochemistry determination in chondroitin sulfate glycosaminoglycan oligosaccharides by electron detachment dissociation. J Am Soc Mass Spectrom. 2012;23:1488–97. https://doi.org/10.1007/s13361-012-0428-5 .
doi: 10.1007/s13361-012-0428-5
Herron WJ, Goeringer DE, McLuckey SA. Gas-phase electron transfer reactions from multiply-charged anions to rare gas cations. J Am Chem Soc. 1995;117:11555–62. https://doi.org/10.1021/ja00151a021 .
doi: 10.1021/ja00151a021
Klein DR, Leach lll FE, Amster IJ, Brodbelt JS. Structural characterization of glycosaminoglycan carbohydrates using ultraviolet photodissociation. Anal Chem 2019;91:6019–6026. https://doi.org/10.1021/acs.analchem.9b00521 .
Fort KL, Cramer CN, Voinov VG, Vasil YV, Lopez NI, Beckman JS, et al. Exploring ECD on a benchtop Q Exactive Orbitrap mass spectrometer. J Proteome Res. 2018;17:926–33. https://doi.org/10.1021/acs.jproteome.7b00622 .
doi: 10.1021/acs.jproteome.7b00622
pubmed: 29249155
Ropartz D, Giuliani A, Hervé C, Geairon A, Jam M, Czjzek M, et al. High-energy photon activation tandem mass spectrometry provides unprecedented insights into the structure of highly sulfated oligosaccharides extracted from macroalgal cell walls. Anal Chem. 2015;87:1042–9. https://doi.org/10.1021/ac5036007 .
doi: 10.1021/ac5036007
pubmed: 25495706
Ropartz D, Giuliani A, Fanuel M, Hervé C, Czjzek M, Rogniaux H. Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: application to the structural investigation of complex glycans by dissociative photoionization. Anal Chim Acta. 2016;933:1–9. https://doi.org/10.1016/j.aca.2016.05.036 .
doi: 10.1016/j.aca.2016.05.036
pubmed: 27496992
Wilson JJ, Brodbelt JS. Ultraviolet photodissociation at 355 nm of fluorescently labeled oligosaccharides. Anal Chem. 2008;80:5186–96. https://doi.org/10.1021/ac800315k .
doi: 10.1021/ac800315k
pubmed: 18505268
Reilly JP. Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom Rev. 2009;28:425–47. https://doi.org/10.1002/mas.20214 .
doi: 10.1002/mas.20214
pubmed: 19241462
pmcid: 5056644
Devakumar A, Mechref Y, Kang P, Novotny MV, Reilly JP. Laser-induced photofragmentation of neutral and acidic glycans inside an ion-trap mass spectrometer. Rapid Commun Mass Spectrom. 2007;21:1452–60. https://doi.org/10.1002/rcm.2981 .
doi: 10.1002/rcm.2981
pubmed: 17385789
Devakumar A, Mechref Y, Kang P, Novotny MV, Reilly JP. Identification of isomeric N-glycan structures by mass spectrometry with 157 nm laser-induced photofragmentation. J Am Soc Mass Spectrom. 2008;19:1027–40. https://doi.org/10.1016/j.jasms.2008.03.005 .
doi: 10.1016/j.jasms.2008.03.005
pubmed: 18487060
pmcid: 2523269
Devakumar A, Thompson MS, Reilly JP. Fragmentation of oligosaccharide ions with 157 nm vacuum ultraviolet light. Rapid Commun Mass Spectrom. 2005;19:2313–20. https://doi.org/10.1002/rcm.2058 .
doi: 10.1002/rcm.2058
pubmed: 16034827
Murtada R, Fabijanczuk K, Gaspar K, Dong X, Alzarieni KZ, Calix K, et al. Free-radical-mediated glycan isomer differentiation. Anal Chem. 2020;92:13794–802. https://doi.org/10.1021/acs.analchem.0c02213 .
doi: 10.1021/acs.analchem.0c02213
pubmed: 32935980
pmcid: 7578046
Desai N, Thomas DA, Lee J, Gao J, Beauchamp JL. Eradicating mass spectrometric glycan rearrangement by utilizing free radicals. Chem Sci. 2016;7:5390–7. https://doi.org/10.1039/c6sc01371f .
doi: 10.1039/c6sc01371f
pubmed: 30155192
pmcid: 6020757
Hoffmann WD, Jackson GP. Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations. J Am Soc Mass Spectrom. 2014;25:1939–43. https://doi.org/10.1007/s13361-014-0989-6 .
doi: 10.1007/s13361-014-0989-6
pubmed: 25231159
Sasiene ZJ, Mendis PM, Jackson GP. Quantitative assessment of six different reagent gases for charge transfer dissociation (CTD) of biological ions. Int J Mass Spectrom. 2021;462:116532. https://doi.org/10.1016/j.ijms.2021.116532 .
doi: 10.1016/j.ijms.2021.116532
pubmed: 33679212
Li P, Kreft I, Jackson GP. Top-down charge transfer dissociation (CTD) of gas-phase insulin: evidence of a one-step, two-electron oxidation mechanism. J Am Soc Mass Spectrom. 2018;29:284–96. https://doi.org/10.1007/s13361-017-1700-5 .
doi: 10.1007/s13361-017-1700-5
pubmed: 28786096
Li P, Jackson GP. Charge transfer dissociation (CTD) of phosphocholines: gas-phase ion/ion reactions between helium cations and phospholipid cations. J Mass Spectrom. 2017;52:271–82. https://doi.org/10.1002/jms.3926 .
doi: 10.1002/jms.3926
pubmed: 28258643
pmcid: 5444994
Bari S, Hoekstra R, Schlathölter T. Peptide fragmentation by keV ion-induced dissociation. Phys Chem Chem Phys. 2010;12:3317–632. https://doi.org/10.1039/b924145k .
Chingin K, Makarov A, Denisov E, Rebrov O, Zubarev RA. Fragmentation of positively-charged biological ions activated with a beam of high-energy cations. Anal Chem. 2014;86:372–9. https://doi.org/10.1021/ac403193k .
doi: 10.1021/ac403193k
pubmed: 24236851
Bari S, Hoekstra R, Schlathölter T. Fast side-chain losses in keV ion-induced dissociation of protonated peptides. Int J Mass Spectrom. 2011;299:64–70. https://doi.org/10.1016/j.ijms.2010.09.019 .
doi: 10.1016/j.ijms.2010.09.019
Buck-Wiese H, Fanuel M, Liebeke M, Le Mai HK, Pardo-Vargas A, Seeberger PH, et al. Discrimination of β-1,4- and β-1,3-linkages in native oligosaccharides via charge transfer dissociation mass spectrometry. J Am Soc Mass Spectrom. 2020;31:1249–59. https://doi.org/10.1021/jasms.0c00087 .
doi: 10.1021/jasms.0c00087
pubmed: 32309938
Doneanu CE, Chen W, Gebler JC. Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry. Anal Chem. 2009;81:3485–99. https://doi.org/10.1021/ac802770r .
doi: 10.1021/ac802770r
pubmed: 19344114
Thanawiroon C, Linhardt RJ. Separation of a complex mixture of heparin-derived oligosaccharides using reversed-phase high-performance liquid chromatography. J Chromatogr A. 2003;1014:215–23. https://doi.org/10.1016/S0021-9673(03)00779-9 .
doi: 10.1016/S0021-9673(03)00779-9
pubmed: 14558627
Thanawiroon C, Rice KG, Toida T, Linhardt RJ. Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J Biol Chem. 2004;279:2608–15. https://doi.org/10.1074/jbc.M304772200 .
doi: 10.1074/jbc.M304772200
pubmed: 14610083
Liu H, Joshi A, Chopra P, Liu L, Boons GJ, Sharp JS. Salt-free fractionation of complex isomeric mixtures of glycosaminoglycan oligosaccharides compatible with ESI-MS and microarray analysis. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-53070-z .
doi: 10.1038/s41598-019-53070-z
Hitchcock AM, Costello CE, Zaia J. Glycoform quantification of chondroitin/dermatan sulfate using a liquid chromatography-tandem mass spectrometry platform. Biochemistry. 2006;45:2350–61. https://doi.org/10.1021/bi052100t .
doi: 10.1021/bi052100t
pubmed: 16475824
Naimy H, Leymarie N, Bowman MJ, Zaia J. Characterization of heparin oligosaccharides binding specifically to antithrombin III using mass spectrometry. Biochemistry. 2008;47:3155–61. https://doi.org/10.1021/bi702043e .
doi: 10.1021/bi702043e
pubmed: 18260648
Wu J, Wei J, Chopra P, Boons GJ, Lin C, Zaia J. Sequencing heparan sulfate using HILIC LC-NETD-MS/MS. Anal Chem. 2019;91:11738–46. https://doi.org/10.1021/acs.analchem.9b02313 .
doi: 10.1021/acs.analchem.9b02313
pubmed: 31423779
pmcid: 7161314
Pabst M, Altmann F. Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem. 2008;80:7534–42. https://doi.org/10.1021/ac801024r .
doi: 10.1021/ac801024r
pubmed: 18778038
Mendis PM, Sasiene ZJ, Ropartz D, Rogniaux H, Jackson GP. Structural characterization of isomeric oligogalacturonan mixtures using ultrahigh-performance liquid chromatography-charge transfer dissociation mass spectrometry. Anal Chem. 2021;93:2838–47. https://doi.org/10.1021/acs.analchem.0c04142 .
doi: 10.1021/acs.analchem.0c04142
pubmed: 33497195
Kuberan B, Lech M, Zhang L, Wu ZL, Beeler DL, Rosenberg RD. Analysis of heparan sulfate oligosaccharides with ion pair-reverse phase capillary high performance liquid chromatography-microelectrospray ionization time-of-flight mass spectrometry. J Am Chem Soc. 2002;124:8707–18. https://doi.org/10.1021/ja0178867 .
doi: 10.1021/ja0178867
pubmed: 12121115
Fenner AM, Kerns RJ. Synthesis, separation, and characterization of amphiphilic sulfated oligosaccharides enabled by reversed-phase ion pairing LC and LC-MS methods. Carbohydr Res. 2011;346:2792–800. https://doi.org/10.1016/j.carres.2011.09.020 .
doi: 10.1016/j.carres.2011.09.020
pubmed: 22015170
pmcid: 3221801
Cook SL, Collin OL, Jackson GP. Metastable atom-activated dissociation mass spectrometry: Leucine/isoleucine differentiation and ring cleavage of proline residues. J Mass Spectrom. 2009;44:1211–23. https://doi.org/10.1002/jms.1598 .
doi: 10.1002/jms.1598
pubmed: 19466707
Gonçlves AG, Ducatti DRB, Grindley TB, Duarte MER, Nosedab MD. ESI-MS differential fragmentation of positional isomers of sulfated oligosaccharides derived from carrageenans and agarans. J Am Soc Mass Spectrom. 2010;21:1404–16. https://doi.org/10.1016/j.jasms.2010.03.045 .
doi: 10.1016/j.jasms.2010.03.045
Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5:397–409. https://doi.org/10.1007/BF01049915 .
doi: 10.1007/BF01049915
Huang Y, Yu X, Mao Y, Costello CE, Zaia J, Lin C. De novo sequencing of heparan sulfate oligosaccharides by electron-activated dissociations. Anal Chem. 2013;85:11979–86. https://doi.org/10.1021/ac402931j .
doi: 10.1021/ac402931j
pubmed: 24224699
pmcid: 3912864
Hu H, Huang Y, Mao Y, Yu X, Xu Y, Liu J, et al. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra. Mol Cell Proteomics. 2014;13:2490–502. https://doi.org/10.1074/mcp.M114.039560 .
doi: 10.1074/mcp.M114.039560
pubmed: 24925905
pmcid: 4159664