A novel 2A-peptide-containing plasmid to generate stable Perkinsus marinus cells expressing organelle-targeted genes.

alternative oxidase dinoflagellates drug selection genetic manipulation membrane-bound organelle polycistronic plasmid

Journal

The Journal of eukaryotic microbiology
ISSN: 1550-7408
Titre abrégé: J Eukaryot Microbiol
Pays: United States
ID NLM: 9306405

Informations de publication

Date de publication:
09 2021
Historique:
pubmed: 30 5 2021
medline: 5 11 2021
entrez: 29 5 2021
Statut: ppublish

Résumé

Genetic manipulation techniques for marine protists are not well-established, despite immense efforts. However, Perkinsus marinus is an exception and can be developed as a genetically tractable model organism for related protists. Here, we designed a new plasmid for P. marinus that allows two proteins from a single mRNA to be differently localized using a self-cleaving 2A peptide. This enabled us to establish a stable transfectant expressing a mitochondrially targeted fluorescent protein. The system can be applied to any protein in theory and would make a powerful tool for investigating unique organelles in P. marinus and related dinoflagellates.

Identifiants

pubmed: 34051022
doi: 10.1111/jeu.12861
doi:

Substances chimiques

Peptides 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12861

Informations de copyright

© 2021 The International Society of Protistologists.

Références

Boucher, M.J., Ghosh, S., Zhang, L., Lal, A., Jang, S.W., Ju, A. et al. (2018) Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biology, 16, e2005895. https://doi.org/10.1371/journal.pbio.2005895
Danne, J.C., Gornik, S.G., Macrae, J.I., McConville, M.J. & Waller, R.F. (2013) Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. Molecular Biology and Evolution, 30, 123-139. https://doi.org/10.1093/molbev/mss205
Dungan, C.F. & Hamilton, R.M. (1995) Use of a tetrazolium-based cell proliferation assay to measure effects of in vitro conditions on Perkinsus marinus (Apicomplexa) proliferation. The Journal of Eukaryotic Microbiology, 42, 379-388
Faktorova, D., Nisbet, R.E.R., Fernandez Robledo, J.A., Casacuberta, E., Sudek, L., Allen, A.E. et al. (2020) Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 17, 481-494. https://doi.org/10.1038/s41592-020-0796-x
Fernández Robledo, J.A., Caler, E., Matsuzaki, M., Keeling, P.J., Shanmugam, D., Roos, D.S. et al. (2011) The search for the missing link: a relic plastid in Perkinsus? International Journal for Parasitology, 41, 1217-1229. https://doi.org/10.1016/j.ijpara.2011.07.008
Fernandez-Robledo, J.A., Lin, Z. & Vasta, G.R. (2008) Transfection of the protozoan parasite Perkinsus marinus. Molecular and Biochemical Parasitology, 157, 44-53. https://doi.org/10.1016/j.molbiopara.2007.09.007
Heras, S.R., Thomas, M.C., Garcia-Canadas, M., de Felipe, P., Garcia-Perez, J.L., Ryan, M.D. et al. (2006) L1Tc non-LTR retrotransposons from Trypanosoma cruzi contain a functional viral-like self-cleaving 2A sequence in frame with the active proteins they encode. Cellular and Molecular Life Sciences, 63, 1449-1460. https://doi.org/10.1007/s00018-006-6038-2
Janouskovec, J., Gavelis, G.S., Burki, F., Dinh, D., Bachvaroff, T.R., Gornik, S.G. et al. (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proceedings of the National Academy of Sciences of the United States of America, 114, E171-E180. https://doi.org/10.1073/pnas.1614842114
Kobayashi, T., Morone, N., Kashiyama, T., Oyamada, H., Kurebayashi, N. & Murayama, T. (2008) Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research. PLoS One, 3, e3822. https://doi.org/10.1371/journal.pone.0003822
Liu, Z., Chen, O., Wall, J.B.J., Zheng, M., Zhou, Y., Wang, L. et al. (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports, 7, 2193. https://doi.org/10.1038/s41598-017-02460-2
Markus, B.M., Bell, G.W., Lorenzi, H.A. & Lourido, S. (2019) Optimizing systems for Cas9 expression in Toxoplasma gondii. mSphere, 4, e00386-19. https://doi.org/10.1128/mSphere
Masuda, I., Matsuzaki, M. & Kita, K. (2010) Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata). Nucleic Acids Research, 38, 6186-6194. https://doi.org/10.1093/nar/gkq449
Matsuzaki, M., Kuroiwa, H., Kuroiwa, T., Kita, K. & Nozaki, H. (2008) A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Molecular Biology and Evolution, 25, 1167-1179. https://doi.org/10.1093/molbev/msn064
Sakamoto, H., Hirakawa, Y., Ishida, K.I., Keeling, P.J., Kita, K. & Matsuzaki, M. (2019) Puromycin selection for stable transfectants of the oyster-infecting parasite Perkinsus marinus. Parasitology International, 69, 13-16. https://doi.org/10.1016/j.parint.2018.10.011
Sakamoto, H., Kita, K. & Matsuzaki, M. (2016) Drug selection using bleomycin for transfection of the oyster-infecting parasite Perkinsus marinus. Parasitology International, 65, 563-566. https://doi.org/10.1016/j.parint.2016.04.003
Sakamoto, H., Suzuki, S., Nagamune, K., Kita, K. & Matsuzaki, M. (2017) Investigation into the physiological significance of the phytohormone abscisic acid in Perkinsus marinus, an oyster parasite harboring a nonphotosynthetic plastid. Journal of Eukaryotic Microbiology, 64, 440-446. https://doi.org/10.1111/jeu.12379
Salehi Sangani, G., Jajarmi, V., Khamesipour, A., Mahmoudi, M., Fata, A. & Mohebali, M. (2019) Generation of a CRISPR/Cas9-based vector specific for gene manipulation in Leishmania major. Iranian Journal of Parasitology, 14, 78-88.
Shiba, T., Kido, Y., Sakamoto, K., Inaoka, D.K., Tsuge, C., Tatsumi, R. et al. (2013) Structure of the trypanosome cyanide-insensitive alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America, 110, 4580-4585. https://doi.org/10.1073/pnas.1218386110
Waller, R.F. & Kořený, L. (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Advances in Botanical Research, 84, 105-143. https://doi.org/10.1016/bs.abr.2017.06.004
Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E. & Keeling, P.J. (2015) Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science, 347, 1257594. https://doi.org/10.1126/science.1257594

Auteurs

Hirokazu Sakamoto (H)

Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Kiyoshi Kita (K)

Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.

Motomichi Matsuzaki (M)

Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.

Articles similaires

Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Animals Huntington Disease Mitochondria Neurons Mice

Detailing organelle division and segregation in Plasmodium falciparum.

Julie M J Verhoef, Cas Boshoven, Felix Evers et al.
1.00
Plasmodium falciparum Mitochondria Apicoplasts Humans Animals
Animals Adjuvants, Immunologic Mice Antigen-Presenting Cells Antigen Presentation

Classifications MeSH