A novel 2A-peptide-containing plasmid to generate stable Perkinsus marinus cells expressing organelle-targeted genes.
alternative oxidase
dinoflagellates
drug selection
genetic manipulation
membrane-bound organelle
polycistronic plasmid
Journal
The Journal of eukaryotic microbiology
ISSN: 1550-7408
Titre abrégé: J Eukaryot Microbiol
Pays: United States
ID NLM: 9306405
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
pubmed:
30
5
2021
medline:
5
11
2021
entrez:
29
5
2021
Statut:
ppublish
Résumé
Genetic manipulation techniques for marine protists are not well-established, despite immense efforts. However, Perkinsus marinus is an exception and can be developed as a genetically tractable model organism for related protists. Here, we designed a new plasmid for P. marinus that allows two proteins from a single mRNA to be differently localized using a self-cleaving 2A peptide. This enabled us to establish a stable transfectant expressing a mitochondrially targeted fluorescent protein. The system can be applied to any protein in theory and would make a powerful tool for investigating unique organelles in P. marinus and related dinoflagellates.
Substances chimiques
Peptides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12861Informations de copyright
© 2021 The International Society of Protistologists.
Références
Boucher, M.J., Ghosh, S., Zhang, L., Lal, A., Jang, S.W., Ju, A. et al. (2018) Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biology, 16, e2005895. https://doi.org/10.1371/journal.pbio.2005895
Danne, J.C., Gornik, S.G., Macrae, J.I., McConville, M.J. & Waller, R.F. (2013) Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. Molecular Biology and Evolution, 30, 123-139. https://doi.org/10.1093/molbev/mss205
Dungan, C.F. & Hamilton, R.M. (1995) Use of a tetrazolium-based cell proliferation assay to measure effects of in vitro conditions on Perkinsus marinus (Apicomplexa) proliferation. The Journal of Eukaryotic Microbiology, 42, 379-388
Faktorova, D., Nisbet, R.E.R., Fernandez Robledo, J.A., Casacuberta, E., Sudek, L., Allen, A.E. et al. (2020) Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 17, 481-494. https://doi.org/10.1038/s41592-020-0796-x
Fernández Robledo, J.A., Caler, E., Matsuzaki, M., Keeling, P.J., Shanmugam, D., Roos, D.S. et al. (2011) The search for the missing link: a relic plastid in Perkinsus? International Journal for Parasitology, 41, 1217-1229. https://doi.org/10.1016/j.ijpara.2011.07.008
Fernandez-Robledo, J.A., Lin, Z. & Vasta, G.R. (2008) Transfection of the protozoan parasite Perkinsus marinus. Molecular and Biochemical Parasitology, 157, 44-53. https://doi.org/10.1016/j.molbiopara.2007.09.007
Heras, S.R., Thomas, M.C., Garcia-Canadas, M., de Felipe, P., Garcia-Perez, J.L., Ryan, M.D. et al. (2006) L1Tc non-LTR retrotransposons from Trypanosoma cruzi contain a functional viral-like self-cleaving 2A sequence in frame with the active proteins they encode. Cellular and Molecular Life Sciences, 63, 1449-1460. https://doi.org/10.1007/s00018-006-6038-2
Janouskovec, J., Gavelis, G.S., Burki, F., Dinh, D., Bachvaroff, T.R., Gornik, S.G. et al. (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proceedings of the National Academy of Sciences of the United States of America, 114, E171-E180. https://doi.org/10.1073/pnas.1614842114
Kobayashi, T., Morone, N., Kashiyama, T., Oyamada, H., Kurebayashi, N. & Murayama, T. (2008) Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research. PLoS One, 3, e3822. https://doi.org/10.1371/journal.pone.0003822
Liu, Z., Chen, O., Wall, J.B.J., Zheng, M., Zhou, Y., Wang, L. et al. (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports, 7, 2193. https://doi.org/10.1038/s41598-017-02460-2
Markus, B.M., Bell, G.W., Lorenzi, H.A. & Lourido, S. (2019) Optimizing systems for Cas9 expression in Toxoplasma gondii. mSphere, 4, e00386-19. https://doi.org/10.1128/mSphere
Masuda, I., Matsuzaki, M. & Kita, K. (2010) Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata). Nucleic Acids Research, 38, 6186-6194. https://doi.org/10.1093/nar/gkq449
Matsuzaki, M., Kuroiwa, H., Kuroiwa, T., Kita, K. & Nozaki, H. (2008) A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Molecular Biology and Evolution, 25, 1167-1179. https://doi.org/10.1093/molbev/msn064
Sakamoto, H., Hirakawa, Y., Ishida, K.I., Keeling, P.J., Kita, K. & Matsuzaki, M. (2019) Puromycin selection for stable transfectants of the oyster-infecting parasite Perkinsus marinus. Parasitology International, 69, 13-16. https://doi.org/10.1016/j.parint.2018.10.011
Sakamoto, H., Kita, K. & Matsuzaki, M. (2016) Drug selection using bleomycin for transfection of the oyster-infecting parasite Perkinsus marinus. Parasitology International, 65, 563-566. https://doi.org/10.1016/j.parint.2016.04.003
Sakamoto, H., Suzuki, S., Nagamune, K., Kita, K. & Matsuzaki, M. (2017) Investigation into the physiological significance of the phytohormone abscisic acid in Perkinsus marinus, an oyster parasite harboring a nonphotosynthetic plastid. Journal of Eukaryotic Microbiology, 64, 440-446. https://doi.org/10.1111/jeu.12379
Salehi Sangani, G., Jajarmi, V., Khamesipour, A., Mahmoudi, M., Fata, A. & Mohebali, M. (2019) Generation of a CRISPR/Cas9-based vector specific for gene manipulation in Leishmania major. Iranian Journal of Parasitology, 14, 78-88.
Shiba, T., Kido, Y., Sakamoto, K., Inaoka, D.K., Tsuge, C., Tatsumi, R. et al. (2013) Structure of the trypanosome cyanide-insensitive alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America, 110, 4580-4585. https://doi.org/10.1073/pnas.1218386110
Waller, R.F. & Kořený, L. (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Advances in Botanical Research, 84, 105-143. https://doi.org/10.1016/bs.abr.2017.06.004
Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E. & Keeling, P.J. (2015) Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science, 347, 1257594. https://doi.org/10.1126/science.1257594