Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans.
Adolescent
Adult
Animals
Bacteroides
/ drug effects
Blood Proteins
/ analysis
Dietary Fiber
/ pharmacology
Feces
/ microbiology
Female
Gastrointestinal Microbiome
/ drug effects
Germ-Free Life
Humans
Male
Mice
Mice, Inbred C57BL
Middle Aged
Obesity
/ microbiology
Overweight
/ microbiology
Proteome
/ analysis
Snacks
Young Adult
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
01
07
2020
accepted:
25
05
2021
pubmed:
25
6
2021
medline:
10
8
2021
entrez:
24
6
2021
Statut:
ppublish
Résumé
Changing food preferences brought about by westernization that have deleterious health effects
Identifiants
pubmed: 34163075
doi: 10.1038/s41586-021-03671-4
pii: 10.1038/s41586-021-03671-4
pmc: PMC8324079
mid: NIHMS1712169
doi:
Substances chimiques
Blood Proteins
0
Dietary Fiber
0
Proteome
0
Types de publication
Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
91-95Subventions
Organisme : NIH HHS
ID : DK70977
Pays : United States
Organisme : NIDDK NIH HHS
ID : P01 DK078669
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK070977
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK056341
Pays : United States
Organisme : NIH HHS
ID : DK078669
Pays : United States
Organisme : NIDDK NIH HHS
ID : F30 DK124967
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK124193
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002345
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Références
NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 387, 1377–1396 (2016).
doi: 10.1016/S0140-6736(16)30054-X
GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).
doi: 10.1016/S0140-6736(19)30041-8
Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
pubmed: 30660336
doi: 10.1016/S0140-6736(18)31788-4
Hauner, H. et al. Evidence-based guideline of the German Nutrition Society: carbohydrate intake and prevention of nutrition-related diseases. Ann. Nutr. Metab. 60 (Suppl 1), 1–58 (2012).
pubmed: 22286913
doi: 10.1159/000335326
Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).
pubmed: 30638909
doi: 10.1016/S0140-6736(18)31809-9
Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).
pubmed: 29590046
doi: 10.1126/science.aao5774
Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).
pubmed: 33432175
pmcid: 8353542
doi: 10.1038/s41591-020-01183-8
Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22, 971–982 (2015).
pubmed: 26552345
doi: 10.1016/j.cmet.2015.10.001
Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).
pubmed: 20603004
pmcid: 2900928
doi: 10.1016/j.cell.2010.05.005
Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).
pubmed: 24009397
doi: 10.1126/science.1241214
Patnode, M. L. et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179, 59–73.e13 (2019).
pubmed: 31539500
pmcid: 6760872
doi: 10.1016/j.cell.2019.08.011
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
pubmed: 24270786
doi: 10.1093/nar/gkt1178
Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014).
pubmed: 24293654
doi: 10.1093/nar/gkt1226
Martino, C. et al. Context-aware dimensionality reduction deconvolutes gut microbial community dynamics. Nat. Biotechnol. 39, 165–168 (2021).
pubmed: 32868914
doi: 10.1038/s41587-020-0660-7
Wesener, D. A. et al. Microbiota functional activity biosensors for characterizing nutrient metabolism in vivo. eLife 10, e64478 (2021).
pubmed: 33684031
pmcid: 7939548
doi: 10.7554/eLife.64478
Temple, M. J. et al. A Bacteroidetes locus dedicated to fungal 1,6-β-glucan degradation: Unique substrate conformation drives specificity of the key endo-1,6-β-glucanase. J. Biol. Chem. 292, 10639–10650 (2017).
pubmed: 28461332
pmcid: 5481569
doi: 10.1074/jbc.M117.787606
Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).
pubmed: 24463512
pmcid: 4282169
doi: 10.1038/nature12907
Schröder, C. et al. Characterization of a theme C glycoside hydrolase family 9 endo-beta-glucanase from a biogas reactor metagenome. Protein J. 37, 454–460 (2018).
pubmed: 30123929
doi: 10.1007/s10930-018-9787-5
Shimizu, H. et al. Characterization and structural analysis of a novel exo-type enzyme acting on β-1,2-glucooligosaccharides from Parabacteroides distasonis. Biochemistry 57, 3849–3860 (2018).
pubmed: 29763309
doi: 10.1021/acs.biochem.8b00385
Li, W. et al. PspAG97A: a halophilic α-glucoside hydrolase with wide substrate specificity from glycoside hydrolase family 97. J. Microbiol. Biotechnol. 26, 1933–1942 (2016).
pubmed: 27558438
doi: 10.4014/jmb.1606.06047
Gloster, T. M., Turkenburg, J. P., Potts, J. R., Henrissat, B. & Davies, G. J. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. Chem. Biol. 15, 1058–1067 (2008).
pubmed: 18848471
pmcid: 2670981
doi: 10.1016/j.chembiol.2008.09.005
Helbert, W. et al. Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc. Natl Acad. Sci. USA 116, 6063–6068 (2019).
pubmed: 30850540
pmcid: 6442616
doi: 10.1073/pnas.1815791116
Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017).
pubmed: 28329766
pmcid: 5388186
doi: 10.1038/nature21725
Hashimoto, W., Miyake, O., Ochiai, A. & Murata, K. Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution. J. Biosci. Bioeng. 99, 48–54 (2005).
pubmed: 16233753
doi: 10.1263/jbb.99.48
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Derecka, M. et al. Tyk2 and Stat3 regulate brown adipose tissue differentiation and obesity. Cell Metab. 16, 814–824 (2012).
pubmed: 23217260
pmcid: 3522427
doi: 10.1016/j.cmet.2012.11.005
Pedersen, L., Olsen, C. H., Pedersen, B. K. & Hojman, P. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. Am. J. Physiol. Endocrinol. Metab. 302, E831–E840 (2012).
pubmed: 22275756
doi: 10.1152/ajpendo.00339.2011
Kraja, A. T. et al. Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study. Lipids 48, 155–165 (2013).
pubmed: 23192668
doi: 10.1007/s11745-012-3740-8
ZhuGe, D. L., Javaid, H. M. A., Sahar, N. E., Zhao, Y. Z. & Huh, J. Y. Fibroblast growth factor 2 exacerbates inflammation in adipocytes through NLRP3 inflammasome activation. Arch. Pharm. Res. 43, 1311–1324 (2020).
pubmed: 33245516
doi: 10.1007/s12272-020-01295-2
Michalak, L. et al. Microbiota-directed fibre activates both targeted and secondary metabolic shifts in the distal gut. Nat. Commun. 11, 5773 (2020).
pubmed: 33188211
pmcid: 7666174
doi: 10.1038/s41467-020-19585-0
Bucholz, K. K., Heath, A. C. & Madden, P. A. Transitions in drinking in adolescent females: evidence from the Missouri adolescent female twin study. Alcohol. Clin. Exp. Res. 24, 914–923 (2000).
pubmed: 10888082
doi: 10.1111/j.1530-0277.2000.tb02073.x
Mifflin, M. D. et al. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 51, 241–247 (1990).
pubmed: 2305711
doi: 10.1093/ajcn/51.2.241
Subar, A. F. et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am. J. Epidemiol. 154, 1089–1099 (2001).
pubmed: 11744511
doi: 10.1093/aje/154.12.1089
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108 (Suppl 1), 4516–4522 (2011).
pubmed: 20534432
doi: 10.1073/pnas.1000080107
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Di Luccia, B. et al. Combined prebiotic and microbial intervention improves oral cholera vaccination responses in a mouse model of childhood undernutrition. Cell Host Microbe 27, 899–908.e5 (2020).
pubmed: 32348782
pmcid: 7292785
doi: 10.1016/j.chom.2020.04.008
Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).
pubmed: 26000737
pmcid: 4441430
doi: 10.1371/journal.pone.0128036
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ. 17, 10–12 (2011
doi: 10.14806/ej.17.1.200
Joshi, N. A. & Fass, J. N. Sickle: A Sliding-Window, Adaptive, Quality-based Trimming tool for FastQ Files (Version 1.33) Software (2011).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
pubmed: 22495754
doi: 10.1093/bioinformatics/bts174
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
pubmed: 25609793
doi: 10.1093/bioinformatics/btv033
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063
doi: 10.1093/bioinformatics/btu153
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007
doi: 10.1038/nmeth.3176
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
pubmed: 20003500
pmcid: 2803857
doi: 10.1186/1471-2105-10-421
Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).
pubmed: 23598997
pmcid: 3695513
doi: 10.1093/nar/gkt263
Chen, R. Y. et al. Duodenal microbiota in stunted undernourished children with enteropathy. N. Engl. J. Med. 383, 321–333 (2020).
pubmed: 32706533
pmcid: 7289524
doi: 10.1056/NEJMoa1916004
Plerou, V. et al. Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2002).
doi: 10.1103/PhysRevE.65.066126
Winkler, E. S. et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 184, 1804–1820.e16 (2021).
pubmed: 33691139
pmcid: 7879018
doi: 10.1016/j.cell.2021.02.026
Zou, W. et al. Ablation of fat cells in adult mice induces massive bone gain. Cell Metab. 32, 801–813.e6 (2020).
pubmed: 33027637
doi: 10.1016/j.cmet.2020.09.011
pmcid: 7642038
Adamo, L. et al. Proteomic signatures of heart failure in relation to left ventricular ejection fraction. J. Am. Coll. Cardiol. 76, 1982–1994 (2020).
pubmed: 33092734
doi: 10.1016/j.jacc.2020.08.061
pmcid: 7584807
Tsingas, M. et al. Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biol. 94, 110–133 (2020).
pubmed: 33027692
doi: 10.1016/j.matbio.2020.09.003
pmcid: 7778523
Joly, J. H., Lowry, W. E. & Graham, N. A. Differential gene set enrichment analysis: a statistical approach to quantify the relative enrichment of two gene sets. Bioinformatics 36, 5247–5254 (2020).
pmcid: 8453775
doi: 10.1093/bioinformatics/btaa658
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Blakeney, A. B., Harris, P. J., Henry, R. J. & Stone, B. A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 113, 291–299 (1983).
doi: 10.1016/0008-6215(83)88244-5
Englyst, H. N. & Cummings, J. H. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. J. Assoc. Off. Anal. Chem. 71, 808–814 (1988).
pubmed: 2458334
Blumenkrantz, N. & Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489 (1973).
pubmed: 4269305
doi: 10.1016/0003-2697(73)90377-1
Thibault, J.-F. Automatisation du dosage des substances pectiques par la méthode au métahydroxydiphényle. Lebensm. Wiss. Technol. 12, 247–251 (1979).
Filisetti-Cozzi, T. M. C. C. & Carpita, N. C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 197, 157–162 (1991).
pubmed: 1952059
doi: 10.1016/0003-2697(91)90372-Z
Levigne, S., Thomas, M., Ralet, M.-C., Quemener, B. & Thibault, J.-F. Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocoll. 16, 547–550 (2002).
doi: 10.1016/S0268-005X(02)00015-2
Pettolino, F. A., Walsh, C., Fincher, G. B. & Bacic, A. Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7, 1590–1607 (2012).
pubmed: 22864200
doi: 10.1038/nprot.2012.081
Buffetto, F. et al. The deconstruction of pectic rhamnogalacturonan I unmasks the occurrence of a novel arabinogalactan oligosaccharide epitope. Plant Cell Physiol. 56, 2181–2196 (2015).
pubmed: 26384432
Amicucci, M. J. et al. A rapid-throughput adaptable method for determining the monosaccharide composition of polysaccharides. Int. J. Mass Spectrom. 438, 22–28 (2019).
doi: 10.1016/j.ijms.2018.12.009
Xu, G., Amicucci, M. J., Cheng, Z., Galermo, A. G. & Lebrilla, C. B. Revisiting monosaccharide analysis - quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst 143, 200–207 (2018).
doi: 10.1039/C7AN01530E
Galermo, A. G. et al. Liquid chromatography-tandem mass spectrometry approach for determining glycosidic linkages. Anal. Chem. 90, 13073–13080 (2018).
pubmed: 30299929
pmcid: 6221975
doi: 10.1021/acs.analchem.8b04124
Galermo, A. G., Nandita, E., Castillo, J. J., Amicucci, M. J. & Lebrilla, C. B. Development of an extensive linkage library for characterization of carbohydrates. Anal. Chem. 91, 13022–13031 (2019).
pubmed: 31525948
doi: 10.1021/acs.analchem.9b03101
Cowardin, C. A. et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc. Natl Acad. Sci. USA 116, 11988–11996 (2019).
pubmed: 31138692
pmcid: 6575181
doi: 10.1073/pnas.1821770116