GEFA: Early Fusion Approach in Drug-Target Affinity Prediction.


Journal

IEEE/ACM transactions on computational biology and bioinformatics
ISSN: 1557-9964
Titre abrégé: IEEE/ACM Trans Comput Biol Bioinform
Pays: United States
ID NLM: 101196755

Informations de publication

Date de publication:
Historique:
pubmed: 2 7 2021
medline: 6 4 2022
entrez: 1 7 2021
Statut: ppublish

Résumé

Predicting the interaction between a compound and a target is crucial for rapid drug repurposing. Deep learning has been successfully applied in drug-target affinity (DTA)problem. However, previous deep learning-based methods ignore modeling the direct interactions between drug and protein residues. This would lead to inaccurate learning of target representation which may change due to the drug binding effects. In addition, previous DTA methods learn protein representation solely based on a small number of protein sequences in DTA datasets while neglecting the use of proteins outside of the DTA datasets. We propose GEFA (Graph Early Fusion Affinity), a novel graph-in-graph neural network with attention mechanism to address the changes in target representation because of the binding effects. Specifically, a drug is modeled as a graph of atoms, which then serves as a node in a larger graph of residues-drug complex. The resulting model is an expressive deep nested graph neural network. We also use pre-trained protein representation powered by the recent effort of learning contextualized protein representation. The experiments are conducted under different settings to evaluate scenarios such as novel drugs or targets. The results demonstrate the effectiveness of the pre-trained protein embedding and the advantages our GEFA in modeling the nested graph for drug-target interaction.

Identifiants

pubmed: 34197324
doi: 10.1109/TCBB.2021.3094217
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

718-728

Auteurs

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking
Humans Shoulder Fractures Tomography, X-Ray Computed Neural Networks, Computer Female

Classifications MeSH