High-content single-cell combinatorial indexing.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
12 2021
Historique:
received: 08 01 2021
accepted: 20 05 2021
pubmed: 7 7 2021
medline: 15 4 2022
entrez: 6 7 2021
Statut: ppublish

Résumé

Single-cell combinatorial indexing (sci) with transposase-based library construction increases the throughput of single-cell genomics assays but produces sparse coverage in terms of usable reads per cell. We develop symmetrical strand sci ('s3'), a uracil-based adapter switching approach that improves the rate of conversion of source DNA into viable sequencing library fragments following tagmentation. We apply this chemistry to assay chromatin accessibility (s3-assay for transposase-accessible chromatin, s3-ATAC) in human cortical and mouse whole-brain tissues, with mouse datasets demonstrating a six- to 13-fold improvement in usable reads per cell compared with other available methods. Application of s3 to single-cell whole-genome sequencing (s3-WGS) and to whole-genome plus chromatin conformation (s3-GCC) yields 148- and 14.8-fold improvements, respectively, in usable reads per cell compared with sci-DNA-sequencing and sci-HiC. We show that s3-WGS and s3-GCC resolve subclonal genomic alterations in patient-derived pancreatic cancer cell lines. We expect that the s3 platform will be compatible with other transposase-based techniques, including sci-MET or CUT&Tag.

Identifiants

pubmed: 34226710
doi: 10.1038/s41587-021-00962-z
pii: 10.1038/s41587-021-00962-z
pmc: PMC8678206
mid: NIHMS1707134
doi:

Substances chimiques

Chromatin 0
DNA 9007-49-2
Transposases EC 2.7.7.-

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1574-1580

Subventions

Organisme : NCI NIH HHS
ID : R01 CA186241
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA047237
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH113926
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM124704
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).
pubmed: 25953818 pmcid: 4836442 doi: 10.1126/science.aab1601
Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).
pubmed: 21143862 pmcid: 3046479 doi: 10.1186/gb-2010-11-12-r119
Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).
pubmed: 30166492 pmcid: 6360088 doi: 10.1126/science.aat5641
Sos, B. C. et al. Characterization of chromatin accessibility with a transposome hypersensitive sites sequencing (THS-seq) assay. Genome Biol. 17, 20 (2016).
pubmed: 26846207 pmcid: 4743176 doi: 10.1186/s13059-016-0882-7
Yin, Y. et al. High-throughput single-cell sequencing with linear amplification. Mol. Cell 76, 676–690.e10 (2019).
pubmed: 31495564 pmcid: 6874760 doi: 10.1016/j.molcel.2019.08.002
Chen, C. et al. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science 356, 189–194 (2017).
pubmed: 28408603 pmcid: 5538131 doi: 10.1126/science.aak9787
Adey, A. & Shendure, J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res. 22, 1139–1143 (2012).
pubmed: 22466172 pmcid: 3371708 doi: 10.1101/gr.136242.111
Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).
pubmed: 29644997 pmcid: 5938134 doi: 10.1038/nbt.4112
Wang, O. et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 29, 798–808 (2019).
pubmed: 30940689 pmcid: 6499310 doi: 10.1101/gr.245126.118
Vitak, S. A. et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat. Methods 14, 302–308 (2017).
pubmed: 28135258 pmcid: 5908213 doi: 10.1038/nmeth.4154
Amini, S. et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat. Genet. 46, 1343–1349 (2014).
pubmed: 25326703 pmcid: 4409979 doi: 10.1038/ng.3119
Adey, A. et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res. 24, 2041–2049 (2014).
pubmed: 25327137 pmcid: 4248320 doi: 10.1101/gr.178319.114
Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation.Nat. Neurosci. 21, 432–439 (2018).
pubmed: 29434377 pmcid: 5862073 doi: 10.1038/s41593-018-0079-3
Single Cell ATAC: Official (10X Genomics Support, 2020); https://support.10xgenomics.com/single-cell-atac
Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility.Nat. Biotechnol. 37, 916–924 (2019).
pubmed: 31235917 doi: 10.1038/s41587-019-0147-6
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Bravo González-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019).
pubmed: 30962623 doi: 10.1038/s41592-019-0367-1
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).
doi: 10.1038/nbt.4314
Stuart, T., Srivastava, A., Lareau, C. & Satija, R. Multimodal single-cell chromatin analysis with Signac. Preprint at bioRxiv https://doi.org/10.1101/2020.11.09.373613 (2020).
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
pubmed: 31435019 pmcid: 6919571 doi: 10.1038/s41586-019-1506-7
Thornton, C. A. et al. Spatially mapped single-cell chromatin accessibility. Nat. Commun. 12, 1274 (2021).
pubmed: 33627658 pmcid: 7904839 doi: 10.1038/s41467-021-21515-7
Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7721 (2020).
Wang, R., Lin, D. Y. & Jiang, Y. SCOPE: a normalization and copy-number estimation method for single-cell DNA sequencing. Cell Syst. 10, 445–452.e6 (2020).
pubmed: 32437686 pmcid: 7250054 doi: 10.1016/j.cels.2020.03.005
Laks, E. et al. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179, 1207–1221.e22 (2019).
pubmed: 31730858 pmcid: 6912164 doi: 10.1016/j.cell.2019.10.026
Raphael, B. J. et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, e13 (2017).
doi: 10.1016/j.ccell.2017.07.007
Lindenburger, K. et al. Drug responses of patient-derived cell lines in vitro that match drug responses of patient PDAc tumors in situ. Ann. Pancreat. Cancer 1, AB024 (2018).
doi: 10.21037/apc.2018.AB024
Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).
pubmed: 28135255 pmcid: 5330809 doi: 10.1038/nmeth.4155
Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).
pubmed: 28682332 pmcid: 5567812 doi: 10.1038/nature23001
Ahmed, S., Bradshaw, A.-D., Gera, S., Dewan, M. & Xu, R. The TGF-β/smad4 signaling pathway in pancreatic carcinogenesis and its clinical significance. J. Clin. Med. 6, 5 (2017).
pmcid: 5294958 doi: 10.3390/jcm6010005
Wu, H. et al. PRSS1 genotype is associated with prognosis in patients with pancreatic ductal adenocarcinoma. Oncol. Lett. 19, 121–126 (2020).
pubmed: 31897122
Kim, H.-J. et al. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1008173 (2020).
Sritangos, P. et al. Plasma membrane Ca
Ahmad, M. K., Abdollah, N. A., Shafie, N. H., Yusof, N. M. & Razak, S. R. A. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol. Med. 15, 14–28 (2018).
pubmed: 29545965 pmcid: 5842331 doi: 10.20892/j.issn.2095-3941.2017.0107
Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).
pubmed: 31036827 pmcid: 6488672 doi: 10.1038/s41467-019-09982-5
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547 pmcid: 5635824 doi: 10.1016/j.cell.2014.11.021
Liu, X. et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat. Protoc. 12, 439–451 (2017).
pubmed: 28125105 pmcid: 6195120 doi: 10.1038/nprot.2016.174
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
pubmed: 30357393 doi: 10.1093/nar/gky955
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505 pmcid: 2828108 doi: 10.1093/bioinformatics/btp698
Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2017).
Sinnamon, J. R. et al. The accessible chromatin landscape of the murine hippocampus at single-cell resolution. Genome Res. 29, 857–869 (2019).
pubmed: 30936163 pmcid: 6499306 doi: 10.1101/gr.243725.118
Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).
pubmed: 22576172 pmcid: 3389768 doi: 10.1093/bioinformatics/bts277
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Mcinnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection software review repository archive. J. Open Source Softw. https://doi.org/10.21105/joss.00861 (2018).
Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell https://doi.org/10.1016/j.molcel.2018.06.044 (2018).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
González-Blas, C. B. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019).
pmcid: 6517279 doi: 10.1038/s41592-019-0367-1
Jiang, Y. et al. CODEX2: Full-spectrum copy number variation detection by high-throughput DNA sequencing. Genome Biol. 19, 202 (2018).
pubmed: 30477554 pmcid: 6260772 doi: 10.1186/s13059-018-1578-y
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data.Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Drost, H.-G. Philentropy: information theory and distance quantification with R. J. Open Source Softw. 3, 765 (2018).
doi: 10.21105/joss.00765
Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).
pubmed: 26209431 pmcid: 4817050 doi: 10.1093/bioinformatics/btv428
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754
pysam. https://github.com/pysam-developers/pysam (GitHub, 2020).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
pubmed: 19815776 pmcid: 2858594 doi: 10.1126/science.1181369

Auteurs

Ryan M Mulqueen (RM)

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.

Dmitry Pokholok (D)

Scale Bio, Berkeley, CA, USA.

Brendan L O'Connell (BL)

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.

Casey A Thornton (CA)

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.

Fan Zhang (F)

Scale Bio, Berkeley, CA, USA.

Brian J O'Roak (BJ)

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.

Jason Link (J)

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Brendan Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA.

Galip Gürkan Yardımcı (GG)

Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA.

Rosalie C Sears (RC)

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Brendan Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA.
Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA.

Frank J Steemers (FJ)

Scale Bio, Berkeley, CA, USA.

Andrew C Adey (AC)

Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA. adey@ohsu.edu.
Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. adey@ohsu.edu.
Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA. adey@ohsu.edu.
Department of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA. adey@ohsu.edu.
Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA. adey@ohsu.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH