Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 26 02 2021
accepted: 29 06 2021
pubmed: 8 7 2021
medline: 18 8 2021
entrez: 7 7 2021
Statut: ppublish

Résumé

Salt water, in addition to being a naturally corrosive environment, also includes factors such as temperature, pressure, and the presence of the microbial community in the environment that influence degradation processes on metal surfaces. The presence or absence of water flow over the metal surfaces is also an important aspect that influences the corrosion of metals. The objective of this study was to evaluate the presence or absence of salt water flow in the formation of biofilms grown in 316L stainless steel coupons. For this, the 316L stainless steel coupons were exposed in two different microcosms, the first being a system with continuous salt water flow, and the second without salt water flow system. The results of the sequencing of the 16S rDNA genes showed a clear difference in structures and diversity between the evaluated biofilms. There was greater abundance and diversity in the "In Flux" system when compared to the "No Flux" biofilm. The analysis of bacterial diversity showed a predominance of the Gammaproteobacteria class in both systems. However, at lower taxonomic levels, there were considerable differences in representativeness. Representatives of Vibrionales, Alteromonadales, Oceanospirillales, and Flavobacteriales were predominant in "No Flux", whereas in "In Flux" there was a greater representation of Alteromonadales, Rhodobacterales, and Saprospirales. These findings help to understand how the flow of water influences the dynamics of the formation of microbial biofilms on metal surfaces, which will contribute to the choice of strategies used to mitigate microbial biofouling.

Identifiants

pubmed: 34232364
doi: 10.1007/s00284-021-02596-5
pii: 10.1007/s00284-021-02596-5
doi:

Substances chimiques

Water 059QF0KO0R
Stainless Steel 12597-68-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3394-3402

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Koch GH, Varney J, Thompson NO, Moghissi O, Gould M, Payer JH (2016) NACE International IMPACT report 2016.
Price SJ, Figueira RB (2017) Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings 7:1–51
doi: 10.3390/coatings7020025
Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States. National Technical Information Service, Alexandria
Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76
pubmed: 14618690 doi: 10.1080/0892701021000041078 pmcid: 14618690
Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119
doi: 10.1016/j.geoderma.2004.01.002
Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641
pubmed: 19833503 doi: 10.1016/j.copbio.2009.09.006 pmcid: 19833503
Ma Y, Zhang Y, Zhang R, Guan F, Hou B, Duan J (2020) Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view. Appl Microbiol Biotechnol 104:515–525
pubmed: 31807887 doi: 10.1007/s00253-019-10184-8 pmcid: 31807887
Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245–1253
pubmed: 17701408 doi: 10.1007/s00253-007-1130-6 pmcid: 17701408
Li Y, Xu D, Chena C, Li X, Jia R, Zhang D, Sand W, Wang F, Gu T (2018) Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mater Sci Technol 34:1713–1718
doi: 10.1016/j.jmst.2018.02.023
Lugauskas A, Prosyčevas I, Ramanauskas R, Grigucevičienė A, Selskienė A, Pakštas V (2009) The influence of micromycetes on the corrosion behaviour of metals (steel, al) under conditions of the environment polluted with organic substances. Mater Sci 15:224–235
Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35(5):73
pubmed: 31037431 doi: 10.1007/s11274-019-2647-4 pmcid: 31037431
Moura V, Ribeiro I, Moriggi P, Capão A, Salles C, Bitati S, Procópio L (2018) The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 200(10):1447–1456
pubmed: 30109372 doi: 10.1007/s00203-018-1559-2 pmcid: 30109372
Ritter A, Com E, Bazire A, Goncalves MDS, Delage L, Pennec GL, Dufour A (2012) Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41. Proteomics 12(21):3180–3192
pubmed: 22965736 doi: 10.1002/pmic.201100644 pmcid: 22965736
Hubert C, Nemati M, Jenneman G, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68(2):272–282
pubmed: 15711941 doi: 10.1007/s00253-005-1897-2 pmcid: 15711941
Pinnock T, Voordouw J, Voordouw G (2018) Use of carbon steel ball bearings to determine the effect of biocides and corrosion inhibitors on microbiologically influenced corrosion under flow conditions. Appl Microbiol Biotechnol 102:5741–5751
pubmed: 29749561 doi: 10.1007/s00253-018-8974-9 pmcid: 29749561
Wang LC, Li SF, Wang LB, Cui K, Zhang QL, Liu HB, Li G (2016) Relationships between the characteristics of CaCO
doi: 10.1016/j.expthermflusci.2015.12.001
Mumford AC, Adaktylou IJ, Emerson D (2016) Peeking under the iron curtain: development of a microcosm for imaging the colonization of steel surfaces by Mariprofundus sp. strain DIS-1, an oxygen-tolerant Fe-oxidizing bacterium. Appl Environ Microbiol 82(22):6799–6807
pubmed: 27637877 pmcid: 5086573 doi: 10.1128/AEM.01990-16
Procópio L (2020) Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104(14):6397–6411
pubmed: 32458139 doi: 10.1007/s00253-020-10688-8 pmcid: 32458139
Ramírez GA, Hoffman CL, Lee MD et al (2016) Assessing marine microbial induced corrosion at Santa Catalina Island, California. Front Microbiol 7:1679
pubmed: 27826293 pmcid: 5078718 doi: 10.3389/fmicb.2016.01679
Procópio L (2020) Microbial community profiles grown on 1020 carbon steel surfaces in seawater-isolated microcosm. Ann Microbiol 70:13
doi: 10.1186/s13213-020-01547-y
An D, Dong X, An A, Park HS, Strous M, Voordouw G (2016) Metagenomic analysis indicates Epsilonproteobacteria as a potential cause of microbial corrosion in pipelines injected with bisulfite. Front Microbiol 7:28
pubmed: 26858705 pmcid: 4729907 doi: 10.3389/fmicb.2016.00028
Bonifay V, Wawrik B, Sunner J, Snodgrass EC, Aydin E, Duncan KE, Callaghan AV, Oldham A, Liengen T, Beech I (2017) Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Front Microbiol 8:99
pubmed: 28197141 pmcid: 5281625 doi: 10.3389/fmicb.2017.00099
Li X, Duan J, Xiao H, Li Y, Liu H, Guan F, Zhai X (2017) Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of illumina MiSeq sequencing. Front Microbiol 8:1737
pubmed: 28955315 pmcid: 5601074 doi: 10.3389/fmicb.2017.01737
Rajala P, Carpén L, Vepsäläinen M, Raulio M, Sohlberg E, Bomberg M (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 6:647
pubmed: 26257707 pmcid: 4513438 doi: 10.3389/fmicb.2015.00647
Emerson D (2018) The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling 34(9):989–1000
pubmed: 30642207 doi: 10.1080/08927014.2018.1526281 pmcid: 30642207
Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80(4):1226–1236
pubmed: 24317078 pmcid: 3911074 doi: 10.1128/AEM.02848-13
Kryachko Y, Hemmingsen SM (2017) The role of localized acidity generation in microbially influenced corrosion. Curr Microbiol 74(7):870–876
pubmed: 28444419 doi: 10.1007/s00284-017-1254-6 pmcid: 28444419
McBeth JM, Emerson D (2016) In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron-oxidizing bacteria. Front Microbiol 7:767
pubmed: 27252686 pmcid: 4877373 doi: 10.3389/fmicb.2016.00767
Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73
pubmed: 25304512 doi: 10.1128/AEM.02767-14 pmcid: 25304512
Little B, Lee J, Ray R (2007) A review of “green” strategies to prevent or mitigate microbiologically influenced corrosion. Biofouling 23:87–97
pubmed: 17453733 doi: 10.1080/08927010601151782 pmcid: 17453733
Trueba A, Eguía E, Milad MM (2010) Biofouling growth on tubular heat exchangers. Mathematical model and simulation. J Marit Res 8:15–34
Trueba A, García S, Otero FM, Vega LM, Madariaga E (2015) Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater. Biofouling 31:527–534
pubmed: 26222187 doi: 10.1080/08927014.2015.1070404 pmcid: 26222187
Tsai YP (2005) Impact of flow velocity on the dynamic behaviour of biofilm bacteria. Biofouling 21:267–277
pubmed: 16522540 doi: 10.1080/08927010500398633 pmcid: 16522540
Abdeen DH, Atieh MA, Merzougui B (2020) Corrosion behaviour of 316L stainless steel in CNTs-water nanofluid: effect of temperature. Materials (Basel) 14(1):119
doi: 10.3390/ma14010119
Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, Raza MR (2017) Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C 77:1261–1274
doi: 10.1016/j.msec.2017.04.102
Capão A, Moreira-Filho P, Garcia M, Bitati S, Procópio L (2020) Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing. Biotechnol Lett 42(8):1431–1448
pubmed: 32472186 doi: 10.1007/s10529-020-02927-9 pmcid: 32472186
De La Fuente MJ, Daille LK, De la Iglesia R, Walczak M, Armijo F, Pizarro GE, Vargas IT (2020) Electrochemical bacterial enrichment from natural seawater and its implications in biocorrosion of stainless-steel electrodes. Materials (Basel) 13(10):2327
doi: 10.3390/ma13102327
Teodósio JS, Simões M, Alves MA, Melo LF, Mergulhão FJ (2012) Setup and validation of flow cell systems for biofouling simulation in industrial settings. Sci World J 2012:361496
doi: 10.1100/2012/361496
Cai D, Wu J, Chai K (2021) Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp. ACS Omega 6(5):3780–3790
pubmed: 33585757 pmcid: 7876863 doi: 10.1021/acsomega.0c05402
Cheng S, Tian J, Chen S, Lei Y, Chang X, Liu T, Yin Y (2009) Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) corrosion behavior. Mater Sci Eng C 29(3):751–755
doi: 10.1016/j.msec.2008.11.013
Dang H, Lovell CR (2015) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80(1):91–138
pubmed: 26700108 pmcid: 4711185 doi: 10.1128/MMBR.00037-15
Guo Z, Liu T, Cheng YF, Guo N, Yin Y (2017) Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion. Colloids Surf B 157:157–165
doi: 10.1016/j.colsurfb.2017.05.045
Huang Y, Zhou E, Jiang C, Jia R, Liu S, Xu D, Wang F (2018) Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochem Commun 94:9–13
doi: 10.1016/j.elecom.2018.07.019
Maia M, Capão A, Procópio L (2019) Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1 strain with potential for microbial enhanced oil recovery. Bioremediation J 23:302–310
doi: 10.1080/10889868.2019.1669527
Moradi M, Song Z, Yang L, Jiang J, He J (2014) Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel. Corros Sci 84:103–112
doi: 10.1016/j.corsci.2014.03.018
Philips J, Van den Driessche N, De Paepe K, Prévoteau A, Gralnick JA, Arends JBA, Rabaey K (2018) A novel Shewanella isolate enhances corrosion by using metallic iron as the electron donor with fumarate as the electron acceptor. Appl Environ Microbiol 84:e01154-e1218
pubmed: 30054363 pmcid: 6182895 doi: 10.1128/AEM.01154-18
Procópio L (2021) The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-12544-2
doi: 10.1007/s11356-021-12544-2 pubmed: 33496949 pmcid: 33496949
Salgar-Chaparro SJ, Darwin A, Kaksonen AH, Machuca LL (2020) Carbon steel corrosion by bacteria from failed seal rings at an offshore facility. Sci Rep 10:12287
pubmed: 32703991 pmcid: 7378185 doi: 10.1038/s41598-020-69292-5
Carvalho ML, Doma J, Sztyler M, Beech I, Cristiani P (2014) The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components. Bioelectrochemistry 97:2–6
pubmed: 24411305 doi: 10.1016/j.bioelechem.2013.12.005 pmcid: 24411305
Korenblum E, Valoni E, Penna M (2010) Seldin L (2010) Bacterial diversity in water injection systems of Brazilian offshore oil platforms. Appl Microbiol Biotechnol 85(3):791–800
pubmed: 19830416 doi: 10.1007/s00253-009-2281-4 pmcid: 19830416
Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG (2011) Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol 13:3059–3074
pubmed: 21951343 doi: 10.1111/j.1462-2920.2011.02583.x pmcid: 21951343
Procópio L, Macrae A, van Elsas JD, Seldin L (2013) The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications. Antonie Van Leeuwenhoek 103(3):635–646
pubmed: 23142860 doi: 10.1007/s10482-012-9847-3 pmcid: 23142860
Abed RMM, Al Fahdi D, Muthukrishnan T (2019) Short-term succession of marine microbial fouling communities and the identification of primary and secondary colonizers. Biofouling 35:526–540
pubmed: 31216872 doi: 10.1080/08927014.2019.1622004 pmcid: 31216872
Abdoli L, Suo X, Li H (2016) Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings. Colloids Surf B 145:688–694
doi: 10.1016/j.colsurfb.2016.05.075
Karn SK, Fang G, Duan J (2017) Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Front Microbiol 8:2038
pubmed: 29114242 pmcid: 5660695 doi: 10.3389/fmicb.2017.02038
Krishnan M, Dahms HU, Seeni P, Gopalan S, Sivanandham V, Jin-Hyoung K, James RA (2017) Multi metal assessment on biofilm formation in offshore environment. Mater Sci Eng C 73:743–755
doi: 10.1016/j.msec.2016.12.062
Shen Y, Dong Y, Yang Y, Li Q, Zhu H, Zhang W, Dong L, Yin Y (2020) Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film. Bioelectrochemistry 132:107408
pubmed: 31816577 doi: 10.1016/j.bioelechem.2019.107408 pmcid: 31816577
Eguía E, Trueba A, Río-Calonge B, Girón A, Bielva C (2008) Biofilm control in tubular heat exchangers refrigerated by seawater using flow inversion physical treatment. Int Biodeterior Biodegrad 62(2):79–87
doi: 10.1016/j.ibiod.2007.12.004
Garcia M, Procópio L (2020) Distinct profiles in microbial diversity on carbon steel and different welds in simulated marine microcosm. Curr Microbiol 77(6):967–978
pubmed: 31993700 doi: 10.1007/s00284-020-01898-4 pmcid: 31993700
García S, Trueba A, Vega LM, Madariaga E (2016) Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser. Biofouling 32(10):1185–1193
pubmed: 27744709 doi: 10.1080/08927014.2016.1241875 pmcid: 27744709

Auteurs

Bárbara Nascimento Rufino (BN)

Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil.

Luciano Procópio (L)

Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil. lucianoprocopio@caxias.ufrj.br.
Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil. lucianoprocopio@caxias.ufrj.br.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol

Classifications MeSH