Dietary carbohydrates and fats in nonalcoholic fatty liver disease.


Journal

Nature reviews. Gastroenterology & hepatology
ISSN: 1759-5053
Titre abrégé: Nat Rev Gastroenterol Hepatol
Pays: England
ID NLM: 101500079

Informations de publication

Date de publication:
11 2021
Historique:
accepted: 14 05 2021
pubmed: 15 7 2021
medline: 23 11 2021
entrez: 14 7 2021
Statut: ppublish

Résumé

The global prevalence of nonalcoholic fatty liver disease (NAFLD) has dramatically increased in parallel with the epidemic of obesity. Controversy has emerged around dietary guidelines recommending low-fat-high-carbohydrate diets and the roles of dietary macronutrients in the pathogenesis of metabolic disease. In this Review, the topical questions of whether and how dietary fats and carbohydrates, including free sugars, differentially influence the accumulation of liver fat (specifically, intrahepatic triglyceride (IHTG) content) are addressed. Focusing on evidence from humans, we examine data from stable isotope studies elucidating how macronutrients regulate IHTG synthesis and disposal, alter pools of bioactive lipids and influence insulin sensitivity. In addition, we review cross-sectional studies on dietary habits of patients with NAFLD and randomized controlled trials on the effects of altering dietary macronutrients on IHTG. Perhaps surprisingly, evidence to date shows no differential effects between free sugars, with both glucose and fructose increasing IHTG in the context of excess energy. Moreover, saturated fat raises IHTG more than polyunsaturated or monounsaturated fats, with adverse effects on insulin sensitivity, which are probably mediated in part by increased ceramide synthesis. Taken together, the data support the use of diets that have a reduced content of free sugars, refined carbohydrates and saturated fat in the treatment of NAFLD.

Identifiants

pubmed: 34257427
doi: 10.1038/s41575-021-00472-y
pii: 10.1038/s41575-021-00472-y
doi:

Substances chimiques

Ceramides 0
Dietary Carbohydrates 0
Dietary Fats 0
Dietary Fats, Unsaturated 0
Dietary Sugars 0
Triglycerides 0
Fructose 30237-26-4
Glucose IY9XDZ35W2

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

770-786

Subventions

Organisme : British Heart Foundation
ID : FS/15/56/31645
Pays : United Kingdom

Informations de copyright

© 2021. Springer Nature Limited.

Références

Moore, J. B. From sugar to liver fat and public health: systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. Proc. Nutr. Soc. 78, 290–304 (2019).
pubmed: 30924429 doi: 10.1017/S0029665119000570
Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease–meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).
pubmed: 26707365 doi: 10.1002/hep.28431
Singh, S. et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643–654.e9 (2015).
pubmed: 24768810 doi: 10.1016/j.cgh.2014.04.014
Yki-Jarvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2, 901–910 (2014).
pubmed: 24731669 doi: 10.1016/S2213-8587(14)70032-4
Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).
pubmed: 23507799 doi: 10.1038/nrgastro.2013.41
Johnston, B. C. et al. Unprocessed red meat and processed meat consumption: dietary guideline recommendations from the Nutritional Recommendations (NutriRECS) Consortium. Ann. Intern. Med. 171, 756–764 (2019).
pubmed: 31569235 doi: 10.7326/M19-1621
Zhang, Z., Thorne, J. L. & Moore, J. B. Vitamin D and nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 22, 449–458 (2019).
pubmed: 31589177 doi: 10.1097/MCO.0000000000000605
Sato, K. et al. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Nutrition 31, 923–930 (2015).
pubmed: 26059365 doi: 10.1016/j.nut.2014.11.018
Safari, Z. & Gerard, P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol. Life Sci. 76, 1541–1558 (2019).
pubmed: 30683985 doi: 10.1007/s00018-019-03011-w
Liu, L., Li, P., Liu, Y. & Zhang, Y. Efficacy of probiotics and synbiotics in patients with nonalcoholic fatty liver disease: a meta-analysis. Dig. Dis. Sci. 64, 3402–3412 (2019).
pubmed: 31203554 doi: 10.1007/s10620-019-05699-z
Jump, D. B., Lytle, K. A., Depner, C. M. & Tripathy, S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol. Ther. 181, 108–125 (2018).
pubmed: 28723414 doi: 10.1016/j.pharmthera.2017.07.007
Wijarnpreecha, K., Thongprayoon, C. & Ungprasert, P. Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 29, e8–e12 (2017).
pubmed: 27824642 doi: 10.1097/MEG.0000000000000776
Marventano, S. et al. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: a systematic review and meta-analysis of observational studies. Clin. Nutr. 35, 1269–1281 (2016).
pubmed: 27060021 doi: 10.1016/j.clnu.2016.03.012
Rehm, J. & Patra, J. Different guidelines for different countries? On the scientific basis of low-risk drinking guidelines and their implications. Drug Alcohol Rev. 31, 156–161 (2012).
pubmed: 22150871 doi: 10.1111/j.1465-3362.2011.00395.x
Eslam, M., Sanyal, A. J., George, J. & International Consensus, P. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).
pubmed: 32044314 doi: 10.1053/j.gastro.2019.11.312
Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73, 202–209 (2020).
pubmed: 32278004 doi: 10.1016/j.jhep.2020.03.039
European Association for the Study of the Liver, European Association for the Study of Diabetes & European Association for the Study of Obesity. EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).
Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).
doi: 10.1002/hep.29367 pubmed: 28714183
Glen, J., Floros, L., Day, C. & Pryke, R., Guideline Development Group. Non-alcoholic fatty liver disease (NAFLD): summary of NICE guidance. BMJ 354, i4428 (2016).
pubmed: 27605111 doi: 10.1136/bmj.i4428
Moore, J. B. & Boesch, C. Getting energy balance right in an obesogenic world. Proc. Nutr. Soc. 78, 259–261 (2019).
pubmed: 31385568 doi: 10.1017/S0029665118002720
Lloyd-Jones, D. et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121, e46–e215 (2010).
pubmed: 20019324
Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C. & Hu, F. B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364, 2392–2404 (2011).
pubmed: 21696306 pmcid: 3151731 doi: 10.1056/NEJMoa1014296
Moore, J. B. & Fielding, B. A. Sugar and metabolic health: is there still a debate? Curr. Opin. Clin. Nutr. Metab. Care 19, 303–309 (2016).
pubmed: 27152734 doi: 10.1097/MCO.0000000000000289
Wise, J. Major report backs overhaul of US dietary guideline process. BMJ 358, j4340 (2017).
pubmed: 28928229 doi: 10.1136/bmj.j4340
Teicholz, N. The scientific report guiding the US dietary guidelines: is it scientific? BMJ 351, h4962 (2015).
pubmed: 26400973 doi: 10.1136/bmj.h4962
Clifton, P. We need more data before rejecting the saturated fat hypothesis. BMJ 347, f6847 (2013).
pubmed: 24252751 doi: 10.1136/bmj.f6847
Lim, D. C. Sugar, not fat, is the culprit. BMJ 347, f6846 (2013).
pubmed: 24255925 doi: 10.1136/bmj.f6846
Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).
pubmed: 25865049 doi: 10.1053/j.gastro.2015.04.005
Promrat, K. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121–129 (2010).
pubmed: 19827166 doi: 10.1002/hep.23276
Ryan, M. C. et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 59, 138–143 (2013).
pubmed: 23485520 doi: 10.1016/j.jhep.2013.02.012
Castera, L., Friedrich-Rust, M. & Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1264–1281.e4 (2019).
pubmed: 30660725 doi: 10.1053/j.gastro.2018.12.036
Kenneally, S., Sier, J. H. & Moore, J. B. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: a systematic review. BMJ Open Gastroenterol. 4, e000139 (2017).
pubmed: 28761689 pmcid: 5508801 doi: 10.1136/bmjgast-2017-000139
Koutoukidis, D. A. et al. Association of weight loss interventions with changes in biomarkers of nonalcoholic fatty liver disease: a systematic review and meta-analysis. JAMA Int. Med. 179, 1262–1271 (2019).
doi: 10.1001/jamainternmed.2019.2248
McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155 (2015).
pubmed: 25477264 doi: 10.1016/j.jhep.2014.11.034
Pais, R. et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 59, 550–556 (2013).
pubmed: 23665288 doi: 10.1016/j.jhep.2013.04.027
Hagstrom, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).
pubmed: 28803953 doi: 10.1016/j.jhep.2017.07.027
National Cancer Institute. Cancer Trends Progress Report 2020 Update. Cancer.gov https://progressreport.cancer.gov/prevention/fat_consumption (2021).
Davy, B. M. & Estabrooks, P. A. The validity of self-reported dietary intake data: focus on the “What We Eat In America” component of the National Health and Nutrition Examination Survey Research Initiative. Mayo Clin. Proc. 90, 845–847 (2015).
pubmed: 26071069 doi: 10.1016/j.mayocp.2015.05.009
Archer, E., Pavela, G. & Lavie, C. J. The inadmissibility of what we eat in America and NHANES dietary data in nutrition and obesity research and the scientific formulation of National Dietary Guidelines. Mayo Clin. Proc. 90, 911–926 (2015).
pubmed: 26071068 doi: 10.1016/j.mayocp.2015.04.009
Food and Agricultural Organization of the United Nations. FAOSTAT new food balances. FAO http://www.fao.org/faostat/en/#data/FBS (2018).
Ritchie H. & Roser, M. Diet compositions. Our World in Data https://ourworldindata.org/diet-compositions#diet-compositions-by-macronutrient (2017).
Musso, G. et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37, 909–916 (2003).
pubmed: 12668986 doi: 10.1053/jhep.2003.50132
Toshimitsu, K. et al. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition 23, 46–52 (2007).
pubmed: 17140767 doi: 10.1016/j.nut.2006.09.004
Zelber-Sagi, S. et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J. Hepatol. 47, 711–717 (2007).
pubmed: 17850914 doi: 10.1016/j.jhep.2007.06.020
Kim, C. H. et al. Nutritional assessments of patients with non-alcoholic fatty liver disease. Obes. Surg. 20, 154–160 (2010).
pubmed: 18560947 doi: 10.1007/s11695-008-9549-0
Zelber-Sagi, S. et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J. Hepatol. 68, 1239–1246 (2018).
pubmed: 29571924 doi: 10.1016/j.jhep.2018.01.015
Noureddin, M. et al. Diet associations with nonalcoholic fatty liver disease in an ethnically diverse population: the Multiethnic Cohort. Hepatology 71, 1940–1952 (2020).
pubmed: 31553803 doi: 10.1002/hep.30967
Jia, Q. et al. Dietary patterns are associated with prevalence of fatty liver disease in adults. Eur. J. Clin. Nutr. 69, 914–921 (2015).
pubmed: 25649235 doi: 10.1038/ejcn.2014.297
Oddy, W. H. et al. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am. J. Gastroenterol. 108, 778–785 (2013).
pubmed: 23545714 doi: 10.1038/ajg.2013.95
Soleimani, D. et al. Dietary patterns in relation to hepatic fibrosis among patients with nonalcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 12, 315–324 (2019).
pubmed: 30881075 pmcid: 6420105 doi: 10.2147/DMSO.S198744
Ma, J. et al. Improved diet quality associates with reduction in liver fat, particularly in individuals with high genetic risk scores for nonalcoholic fatty liver disease. Gastroenterology 155, 107–117 (2018).
pubmed: 29604292 doi: 10.1053/j.gastro.2018.03.038
Khalatbari-Soltani, S. et al. The association between adherence to the Mediterranean diet and hepatic steatosis: cross-sectional analysis of two independent studies, the UK Fenland Study and the Swiss CoLaus Study. BMC Med. 17, 19 (2019).
pubmed: 30674308 pmcid: 6345041 doi: 10.1186/s12916-019-1251-7
Asgari-Taee, F. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur. J. Nutr. 58, 1759–1769 (2019).
pubmed: 29761318 doi: 10.1007/s00394-018-1711-4
Chen, H. et al. Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: an updated systematic review and dose-response meta-analysis. Int. J. Environ. Res. Public Health 16, 2192 (2019).
doi: 10.3390/ijerph16122192 pmcid: 6617076
Charidemou, E. et al. A randomized 3-way crossover study indicates that high-protein feeding induces de novo lipogenesis in healthy humans. JCI Insight 4, e124819 (2019).
doi: 10.1172/jci.insight.124819 pmcid: 6629161
Aarsland, A. & Wolfe, R. R. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J. Lipid Res. 39, 1280–1286 (1998).
pubmed: 9643360 doi: 10.1016/S0022-2275(20)32553-0
Jacome-Sosa, M. M. & Parks, E. J. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr. Opin. Lipidol. 25, 213–220 (2014).
pubmed: 24785962 doi: 10.1097/MOL.0000000000000080
Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).
pubmed: 15864352 pmcid: 1087172 doi: 10.1172/JCI23621
Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).
pubmed: 24316260 doi: 10.1053/j.gastro.2013.11.049
Parks, E. J., Skokan, L. E., Timlin, M. T. & Dingfelder, C. S. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr. 138, 1039–1046 (2008).
pubmed: 18492831 doi: 10.1093/jn/138.6.1039
Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 130, 1453–1460 (2020).
pubmed: 31805015 pmcid: 7269561 doi: 10.1172/JCI134165
Hellerstein, M. K. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur. J. Clin. Nutr. 53 (Suppl. 1), S53–S65 (1999).
pubmed: 10365981 doi: 10.1038/sj.ejcn.1600744
Schwarz, J. M., Neese, R. A., Turner, S., Dare, D. & Hellerstein, M. K. Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J. Clin. Invest. 96, 2735–2743 (1995).
pubmed: 8675642 pmcid: 185982 doi: 10.1172/JCI118342
McGarry, J. D., Mannaerts, G. P. & Foster, D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Invest. 60, 265–270 (1977).
pubmed: 874089 pmcid: 372365 doi: 10.1172/JCI108764
Hodson, L. et al. Docosahexaenoic acid enrichment in NAFLD is associated with improvements in hepatic metabolism and hepatic insulin sensitivity: a pilot study. Eur. J. Clin. Nutr. 71, 973–979 (2017).
pubmed: 28294174 pmcid: 5474320 doi: 10.1038/ejcn.2017.9
Hellerstein, M. K. et al. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J. Clin. Invest. 87, 1841–1852 (1991).
pubmed: 2022750 pmcid: 295308 doi: 10.1172/JCI115206
Marques-Lopes, I., Ansorena, D., Astiasaran, I., Forga, L. & Martinez, J. A. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am. J. Clin. Nutr. 73, 253–261 (2001).
pubmed: 11157321 doi: 10.1093/ajcn/73.2.253
Diraison, F., Moulin, P. & Beylot, M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 29, 478–485 (2003).
pubmed: 14631324 doi: 10.1016/S1262-3636(07)70061-7
Mancina, R. M. et al. Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant. J. Clin. Endocrinol. Metab. 100, E821–E825 (2015).
pubmed: 25763607 doi: 10.1210/jc.2014-4464
Sevastianova, K. et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am. J. Clin. Nutr. 94, 104–111 (2011).
pubmed: 21525193 doi: 10.3945/ajcn.111.012369
Wilke, M. S. et al. Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 52, 1628–1637 (2009).
pubmed: 19536518 doi: 10.1007/s00125-009-1405-9
Semple, R. K. et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J. Clin. Invest. 119, 315–322 (2009).
pubmed: 19164855 pmcid: 2631303
Santoro, N. et al. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. J. Clin. Endocrinol. Metab. 100, E1125–E1132 (2015).
pubmed: 26043229 pmcid: 4524990 doi: 10.1210/jc.2015-1587
Pramfalk, C. et al. fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes 65, 1858–1867 (2016).
pubmed: 27207513 doi: 10.2337/db16-0236
Green, C. J. et al. Hepatic de novo lipogenesis is suppressed and fat oxidation is increased by omega-3 fatty acids at the expense of glucose metabolism. BMJ Open Diabetes Res. Care 8, e000871 (2020).
pubmed: 32188593 pmcid: 7078804 doi: 10.1136/bmjdrc-2019-000871
Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 576 (2017).
pubmed: 28877461 doi: 10.1016/j.cmet.2017.08.011
Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 1463–1473.e6 (2018).
pubmed: 30059671 doi: 10.1053/j.gastro.2018.07.027
Stiede, K. et al. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: a randomized, double-blind, crossover study. Hepatology 66, 324–334 (2017).
pubmed: 28470676 doi: 10.1002/hep.29246
Hodson, L. & Gunn, P. J. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat. Rev. Endocrinol. 15, 689–700 (2019).
pubmed: 31554932 doi: 10.1038/s41574-019-0256-9
Kotronen, A., Juurinen, L., Tiikkainen, M., Vehkavaara, S. & Yki-Jarvinen, H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 135, 122–130 (2008).
pubmed: 18474251 doi: 10.1053/j.gastro.2008.03.021
Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl Acad. Sci. USA 106, 15430–15435 (2009).
pubmed: 19706383 pmcid: 2741268 doi: 10.1073/pnas.0904944106
Gastaldelli, A. et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 133, 496–506 (2007).
pubmed: 17681171 doi: 10.1053/j.gastro.2007.04.068
Mittendorfer, B., Magkos, F., Fabbrini, E., Mohammed, B. S. & Klein, S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity 17, 1872–1877 (2009).
pubmed: 19629053 doi: 10.1038/oby.2009.224
Nouws, J. et al. Altered in vivo lipid fluxes and cell dynamics in subcutaneous adipose tissues are associated with the unfavorable pattern of fat distribution in obese adolescent girls. Diabetes 68, 1168–1177 (2019).
pubmed: 30936147 pmcid: 6610014 doi: 10.2337/db18-1162
Hodson, L. & Frayn, K. N. Hepatic fatty acid partitioning. Curr. Opin. Lipidol. 22, 216–224 (2011).
pubmed: 21494141 doi: 10.1097/MOL.0b013e3283462e16
Malmstrom, R. et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes 47, 779–787 (1998).
pubmed: 9588450 doi: 10.2337/diabetes.47.5.779
Adiels, M. et al. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50, 2356–2365 (2007).
pubmed: 17849096 doi: 10.1007/s00125-007-0790-1
Fabbrini, E. et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134, 424–431 (2008).
pubmed: 18242210 doi: 10.1053/j.gastro.2007.11.038
Umpleby, A. M. et al. Impact of liver fat on the differential partitioning of hepatic triacylglycerol into VLDL subclasses on high and low sugar diets. Clin. Sci. 131, 2561–2573 (2017).
doi: 10.1042/CS20171208
Gill, J. M. et al. Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL. Am. J. Clin. Nutr. 78, 47–56 (2003).
pubmed: 12816770 doi: 10.1093/ajcn/78.1.47
Havel, R. J., Kane, J. P., Balasse, E. O., Segel, N. & Basso, L. V. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest. 49, 2017–2035 (1970).
pubmed: 5475985 pmcid: 535780 doi: 10.1172/JCI106422
Weiss, M., Keller, U. & Stauffacher, W. Effect of epinephrine and somatostatin-induced insulin deficiency on ketone body kinetics and lipolysis in man. Diabetes 33, 738–744 (1984).
pubmed: 6146545 doi: 10.2337/diab.33.8.738
Nosadini, R. et al. Acetoacetate and 3-hydroxybutyrate kinetics in obese and insulin-dependent diabetic humans. Am. J. Physiol. 248, R611–R620 (1985).
pubmed: 3922234
Croci, I. et al. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut 62, 1625–1633 (2013).
pubmed: 23077135 doi: 10.1136/gutjnl-2012-302789
Kotronen, A. et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58, 203–208 (2009).
pubmed: 18952834 pmcid: 2606873 doi: 10.2337/db08-1074
Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14, 804–810 (2011).
pubmed: 22152305 pmcid: 3658280 doi: 10.1016/j.cmet.2011.11.004
Bugianesi, E. et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48, 634–642 (2005).
pubmed: 15747110 doi: 10.1007/s00125-005-1682-x
Petersen, K. F., Befroy, D. E., Dufour, S., Rothman, D. L. & Shulman, G. I. Assessment of hepatic mitochondrial oxidation and pyruvate cycling in NAFLD by
pubmed: 27411016 pmcid: 4946568 doi: 10.1016/j.cmet.2016.06.005
Roberts, R. et al. Reduced oxidation of dietary fat after a short term high-carbohydrate diet. Am. J. Clin. Nutr. 87, 824–831 (2008).
pubmed: 18400703 doi: 10.1093/ajcn/87.4.824
Leyton, J., Drury, P. J. & Crawford, M. A. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br. J. Nutr. 57, 383–393 (1987).
pubmed: 3109464 doi: 10.1079/BJN19870046
Bessesen, D. H., Vensor, S. H. & Jackman, M. R. Trafficking of dietary oleic, linolenic, and stearic acids in fasted or fed lean rats. Am. J. Physiol. Endocrinol. Metab. 278, E1124–E1132 (2000).
pubmed: 10827016 doi: 10.1152/ajpendo.2000.278.6.E1124
Jones, P. J., Pencharz, P. B. & Clandinin, M. T. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am. J. Clin. Nutr. 42, 769–777 (1985).
pubmed: 3933323 doi: 10.1093/ajcn/42.5.769
DeLany, J. P., Windhauser, M. M., Champagne, C. M. & Bray, G. A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 72, 905–911 (2000).
pubmed: 11010930 doi: 10.1093/ajcn/72.4.905
Parry, S. A., Rosqvist, F., Cornfield, T., Barrett, A. & Hodson, L. Oxidation of dietary linoleate occurs to a greater extent than dietary palmitate in vivo in humans. Clin. Nutr. 40, 1108–1114 (2021).
pubmed: 32753348 doi: 10.1016/j.clnu.2020.07.013
Luukkonen, P. K. et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 41, 1732–1739 (2018).
pubmed: 29844096 pmcid: 7082640 doi: 10.2337/dc18-0071
Kirk, E. et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 136, 1552–1560 (2009).
pubmed: 19208352 doi: 10.1053/j.gastro.2009.01.048
Browning, J. D. et al. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am. J. Clin. Nutr. 93, 1048–1052 (2011).
pubmed: 21367948 pmcid: 3076656 doi: 10.3945/ajcn.110.007674
Haufe, S. et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 53, 1504–1514 (2011).
pubmed: 21400557 doi: 10.1002/hep.24242
Westerbacka, J. et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J. Clin. Endocrinol. Metab. 90, 2804–2809 (2005).
pubmed: 15741262 doi: 10.1210/jc.2004-1983
van Herpen, N. A., Schrauwen-Hinderling, V. B., Schaart, G., Mensink, R. P. & Schrauwen, P. Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. J. Clin. Endocrinol. Metab. 96, E691–E695 (2011).
pubmed: 21252252 doi: 10.1210/jc.2010-2243
Utzschneider, K. M. et al. Beneficial effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older subjects. Br. J. Nutr. 109, 1096–1104 (2013).
pubmed: 22849970 doi: 10.1017/S0007114512002966
Mardinoglu, A. et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab. 27, 559–571.e5 (2018).
pubmed: 29456073 pmcid: 6706084 doi: 10.1016/j.cmet.2018.01.005
Elmadfa, I. & Kornsteiner, M. Fats and fatty acid requirements for adults. Ann. Nutr. Metab. 55, 56–75 (2009).
pubmed: 19752536 doi: 10.1159/000228996
Ahn, J., Jun, D. W., Lee, H. Y. & Moon, J. H. Critical appraisal for low-carbohydrate diet in nonalcoholic fatty liver disease: review and meta-analyses. Clin. Nutr. 38, 2023–2030 (2019).
pubmed: 30314924 doi: 10.1016/j.clnu.2018.09.022
Sobrecases, H. et al. Effects of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy men. Diabetes Metab. 36, 244–246 (2010).
pubmed: 20483648 doi: 10.1016/j.diabet.2010.03.003
Bjermo, H. et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 95, 1003–1012 (2012).
pubmed: 22492369 doi: 10.3945/ajcn.111.030114
Rosqvist, F. et al. Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: a randomized trial. J. Clin. Endocrinol. Metab. 104, 6207–6219 (2019).
pubmed: 31369090 pmcid: 6839433 doi: 10.1210/jc.2019-00160
Rosqvist, F. et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 63, 2356–2368 (2014).
pubmed: 24550191 doi: 10.2337/db13-1622
Kien, C. L., Bunn, J. Y. & Ugrasbul, F. Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. Am. J. Clin. Nutr. 82, 320–326 (2005).
pubmed: 16087974 doi: 10.1093/ajcn/82.2.320
Bozzetto, L. et al. Reduction in liver fat by dietary MUFA in type 2 diabetes is helped by enhanced hepatic fat oxidation. Diabetologia 59, 2697–2701 (2016).
pubmed: 27650287 doi: 10.1007/s00125-016-4110-5
Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S76–S99 (2014).
pubmed: 24222015 doi: 10.1161/01.cir.0000437740.48606.d1
Hooper, L., Martin, N., Abdelhamid, A. & Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 6, CD011737 (2015).
Farvid, M. S. et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130, 1568–1578 (2014).
pubmed: 25161045 pmcid: 4334131 doi: 10.1161/CIRCULATIONAHA.114.010236
Yaghootkar, H. et al. Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes 63, 4369–4377 (2014).
pubmed: 25048195 pmcid: 4392920 doi: 10.2337/db14-0318
Lotta, L. A. et al. Association of genetic variants related to gluteofemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA 320, 2553–2563 (2018).
pubmed: 30575882 pmcid: 6583513 doi: 10.1001/jama.2018.19329
Yaghootkar, H. et al. Genetic evidence for a link between favorable adiposity and lower risk of type 2 diabetes, hypertension, and heart disease. Diabetes 65, 2448–2460 (2016).
pubmed: 27207519 doi: 10.2337/db15-1671
Ji, Y. et al. Genome-wide and abdominal MRI data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension. Diabetes 68, 207–219 (2019).
pubmed: 30352878 doi: 10.2337/db18-0708
Vessby, B. et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 44, 312–319 (2001).
pubmed: 11317662 doi: 10.1007/s001250051620
Ryysy, L. et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49, 749–758 (2000).
pubmed: 10905483 doi: 10.2337/diabetes.49.5.749
Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).
pubmed: 11266382 doi: 10.1053/gast.2001.23256
Seppala-Lindroos, A. et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87, 3023–3028 (2002).
pubmed: 12107194 doi: 10.1210/jcem.87.7.8638
Korenblat, K. M., Fabbrini, E., Mohammed, B. S. & Klein, S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134, 1369–1375 (2008).
pubmed: 18355813 doi: 10.1053/j.gastro.2008.01.075
Amaro, A. et al. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology 139, 149–153 (2010).
pubmed: 20303351 doi: 10.1053/j.gastro.2010.03.039
Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).
pubmed: 18820647 pmcid: 2597056 doi: 10.1038/ng.257
Sun, Z. & Lazar, M. A. Dissociating fatty liver and diabetes. Trends Endocrinol. Metab. 24, 4–12 (2013).
pubmed: 23043895 doi: 10.1016/j.tem.2012.09.005
Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).
pubmed: 21700865 pmcid: 3229276 doi: 10.1126/science.1204265
Samuel, V. T. & Shulman, G. I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22–41 (2018).
pubmed: 28867301 doi: 10.1016/j.cmet.2017.08.002
Chaurasia, B. & Summers, S. A. Ceramides – lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).
pubmed: 26412155 doi: 10.1016/j.tem.2015.07.006
Havulinna, A. S. et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424–2430 (2016).
pubmed: 27765765 doi: 10.1161/ATVBAHA.116.307497
Hilvo, M. et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 61, 1424–1434 (2018).
pubmed: 29546476 doi: 10.1007/s00125-018-4590-6
Peterson, L. R. et al. Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 7, e007931 (2018).
pubmed: 29728014 pmcid: 6015315 doi: 10.1161/JAHA.117.007931
Lemaitre, R. N. et al. Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: the Strong Heart Family Study. Diabetes 67, 1663–1672 (2018).
pubmed: 29588286 pmcid: 6054436 doi: 10.2337/db17-1449
Gorden, D. L. et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J. Lipid Res. 56, 722–736 (2015).
pubmed: 25598080 pmcid: 4340319 doi: 10.1194/jlr.P056002
Holland, W. L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).
pubmed: 17339025 doi: 10.1016/j.cmet.2007.01.002
Hu, W., Ross, J., Geng, T., Brice, S. E. & Cowart, L. A. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J. Biol. Chem. 286, 16596–16605 (2011).
pubmed: 21454530 pmcid: 3089502 doi: 10.1074/jbc.M110.186916
Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).
pubmed: 31273070 pmcid: 6787918 doi: 10.1126/science.aav3722
Xie, C. et al. An intestinal farnesoid X receptor–ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66, 613–626 (2017).
pubmed: 28223344 doi: 10.2337/db16-0663
Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).
pubmed: 25295788 doi: 10.1016/j.cmet.2014.08.002
Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266–278 (2015).
pubmed: 26190650 pmcid: 4527941 doi: 10.1016/j.cmet.2015.06.007
Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 919 (2014).
pubmed: 29665397 doi: 10.1016/j.cmet.2014.10.007
Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552.e23 (2019).
pubmed: 31150623 doi: 10.1016/j.cell.2019.05.008
Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A. & Fernandez-Checa, J. C. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J. Biol. Chem. 272, 11369–11377 (1997).
pubmed: 9111045 doi: 10.1074/jbc.272.17.11369
Day, C. P. & James, O. F. Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845 (1998).
pubmed: 9547102 doi: 10.1016/S0016-5085(98)70599-2
Colombini, M. Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1797, 1239–1244 (2010).
pubmed: 20100454 doi: 10.1016/j.bbabio.2010.01.021
Martinez, L. et al. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget 6, 41479–41496 (2015).
pubmed: 26539645 pmcid: 4747168 doi: 10.18632/oncotarget.6286
Luukkonen, P. K. et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016).
pubmed: 26780287 doi: 10.1016/j.jhep.2016.01.002
Apostolopoulou, M. et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care 41, 1235–1243 (2018).
pubmed: 29602794 doi: 10.2337/dc17-1318
Samuel, V. T. et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345–32353 (2004).
pubmed: 15166226 doi: 10.1074/jbc.M313478200
Samuel, V. T. et al. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739–745 (2007).
pubmed: 17318260 pmcid: 1797607 doi: 10.1172/JCI30400
Ter Horst, K. W. et al. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 19, 1997–2004 (2017).
pubmed: 28591572 pmcid: 5469939 doi: 10.1016/j.celrep.2017.05.035
Petersen, M. C. et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361–4371 (2016).
pubmed: 27760050 pmcid: 5096902 doi: 10.1172/JCI86013
Raddatz, K. et al. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia 54, 1447–1456 (2011).
pubmed: 21347625 doi: 10.1007/s00125-011-2073-0
Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007).
pubmed: 17654743 doi: 10.1002/hep.21763
Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 108, 16381–16385 (2011).
pubmed: 21930939 pmcid: 3182681 doi: 10.1073/pnas.1113359108
Gorden, D. L. et al. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS ONE 6, e22775 (2011).
pubmed: 21857953 pmcid: 3153459 doi: 10.1371/journal.pone.0022775
Magkos, F. et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444–1446.e2 (2012).
pubmed: 22425588 doi: 10.1053/j.gastro.2012.03.003
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).
pubmed: 17167474 doi: 10.1038/nature05485
Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
pubmed: 14679176 pmcid: 296995 doi: 10.1172/JCI200319246
Sonnenburg, J. L. & Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).
pubmed: 27383980 pmcid: 5991619 doi: 10.1038/nature18846
Mehta, N. N. et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59, 172–181 (2010).
pubmed: 19794059 doi: 10.2337/db09-0367
Lassenius, M. I. et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34, 1809–1815 (2011).
pubmed: 21636801 pmcid: 3142060 doi: 10.2337/dc10-2197
Pang, J. et al. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 46, 175–182 (2017).
pubmed: 28464257 doi: 10.1111/apt.14119
Thurman, R. G. II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am. J. Physiol. 275, G605–G611 (1998).
pubmed: 9756487
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
pubmed: 17456850 doi: 10.2337/db06-1491
Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).
pubmed: 26321659 pmcid: 4598654 doi: 10.1016/j.cmet.2015.07.026
Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
pubmed: 18305141 doi: 10.2337/db07-1403
Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).
pubmed: 17991637 doi: 10.1093/ajcn/86.5.1286
Deopurkar, R. et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care 33, 991–997 (2010).
pubmed: 20067961 pmcid: 2858203 doi: 10.2337/dc09-1630
Hernandez, E. A. et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Invest. 127, 695–708 (2017).
pubmed: 28112681 pmcid: 5272194 doi: 10.1172/JCI89444
Cho, Y. E. et al. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress. Hepatology 73, 2180–2195 (2021).
pubmed: 30959577 doi: 10.1002/hep.30652
Kavanagh, K. et al. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am. J. Clin. Nutr. 98, 349–357 (2013).
pubmed: 23783298 pmcid: 3712547 doi: 10.3945/ajcn.112.057331
Jin, R. et al. Fructose induced endotoxemia in pediatric nonalcoholic fatty liver disease. Int. J. Hepatol. 2014, 560620 (2014).
pubmed: 25328713 pmcid: 4195259 doi: 10.1155/2014/560620
Nier, A., Brandt, A., Rajcic, D., Bruns, T. & Bergheim, I. Short-term isocaloric intake of a fructose- but not glucose-rich diet affects bacterial endotoxin concentrations and markers of metabolic health in normal weight healthy subjects. Mol. Nutr. Food Res. 63, e1800868 (2019).
pubmed: 30570214 doi: 10.1002/mnfr.201800868
Vors, C. et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J. Clin. Endocrinol. Metab. 100, 3427–3435 (2015).
pubmed: 26151336 doi: 10.1210/jc.2015-2518
Bowser, S. M. et al. Serum endotoxin, gut permeability and skeletal muscle metabolic adaptations following a short term high fat diet in humans. Metabolism 103, 154041 (2020).
pubmed: 31785256 doi: 10.1016/j.metabol.2019.154041
Zelber-Sagi, S., Salomone, F. & Mlynarsky, L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: evidence and plausible mechanisms. Liver Int. 37, 936–949 (2017).
pubmed: 28371239 doi: 10.1111/liv.13435
Van Horn, L. et al. Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) Guidelines: a scientific statement from the American Heart Association. Circulation 134, e505–e529 (2016).
pubmed: 27789558
Bozzetto, L. et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care 35, 1429–1435 (2012).
pubmed: 22723581 pmcid: 3379578 doi: 10.2337/dc12-0033
Errazuriz, I. et al. Randomized controlled trial of a MUFA or fiber-rich diet on hepatic fat in prediabetes. J. Clin. Endocrinol. Metab. 102, 1765–1774 (2017).
pubmed: 28323952 pmcid: 5443322 doi: 10.1210/jc.2016-3722
Gepner, Y. et al. Effect of distinct lifestyle interventions on mobilization of fat storage pools: CENTRAL magnetic resonance imaging randomized controlled trial. Circulation 137, 1143–1157 (2018).
pubmed: 29142011 doi: 10.1161/CIRCULATIONAHA.117.030501
Gepner, Y. et al. The beneficial effects of Mediterranean diet over low-fat diet may be mediated by decreasing hepatic fat content. J. Hepatol. 71, 379–388 (2019).
pubmed: 31075323 doi: 10.1016/j.jhep.2019.04.013
Properzi, C. et al. Ad libitum Mediterranean and low-fat diets both significantly reduce hepatic steatosis: a randomized controlled trial. Hepatology 68, 1741–1754 (2018).
pubmed: 29729189 doi: 10.1002/hep.30076
Pepin, A., Stanhope, K. L. & Imbeault, P. Are fruit juices healthier than sugar-sweetened beverages? A review. Nutrients 11, 1006 (2019).
doi: 10.3390/nu11051006 pmcid: 6566863
Moore, J. B., Gunn, P. J. & Fielding, B. A. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 6, 5679–5703 (2014).
pubmed: 25514388 pmcid: 4276992 doi: 10.3390/nu6125679
Maldonado, E. M. et al. Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease. NPJ Syst. Biol. Appl. 4, 33 (2018).
pubmed: 30131870 pmcid: 6102210 doi: 10.1038/s41540-018-0070-3
Tappy, L. & Le, K. A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 90, 23–46 (2010).
pubmed: 20086073 doi: 10.1152/physrev.00019.2009
Pinnick, K. E. & Hodson, L. Challenging metabolic tissues with fructose: tissue-specific and sex-specific responses. J. Physiol. 597, 3527–3537 (2019).
pubmed: 30883738 doi: 10.1113/JP277115
Jang, C. et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018).
pubmed: 29414685 pmcid: 6032988 doi: 10.1016/j.cmet.2017.12.016
Francey, C. et al. The extra-splanchnic fructose escape after ingestion of a fructose-glucose drink: an exploratory study in healthy humans using a dual fructose isotope method. Clin. Nutr. ESPEN 29, 125–132 (2019).
pubmed: 30661675 doi: 10.1016/j.clnesp.2018.11.008
Johnston, R. D. et al. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 145, 1016–1025.e2 (2013).
pubmed: 23872500 doi: 10.1053/j.gastro.2013.07.012
Schwarz, J. M. et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 100, 2434–2442 (2015).
pubmed: 25825943 pmcid: 4454806 doi: 10.1210/jc.2014-3678
Ngo Sock, E. T. et al. Effects of a short-term overfeeding with fructose or glucose in healthy young males. Br. J. Nutr. 103, 939–943 (2010).
pubmed: 19930762 doi: 10.1017/S0007114509992819
Silbernagel, G. et al. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. Br. J. Nutr. 106, 79–86 (2011).
pubmed: 21396140 doi: 10.1017/S000711451000574X
Bravo, S., Lowndes, J., Sinnett, S., Yu, Z. & Rippe, J. Consumption of sucrose and high-fructose corn syrup does not increase liver fat or ectopic fat deposition in muscles. Appl. Physiol.Nutr. Metab. 38, 681–688 (2013).
pubmed: 23724887 doi: 10.1139/apnm-2012-0322
Lecoultre, V. et al. Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity 21, 782–785 (2013).
pubmed: 23512506 doi: 10.1002/oby.20377
Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).
pubmed: 19381015 pmcid: 2673878 doi: 10.1172/JCI37385
Taskinen, M. R. et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J. Intern. Med. 282, 187–201 (2017).
pubmed: 28548281 doi: 10.1111/joim.12632
Sun, S. Z., Anderson, G. H., Flickinger, B. D., Williamson-Hughes, P. S. & Empie, M. W. Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. Food Chem. Toxicol. 49, 2875–2882 (2011).
pubmed: 21889564 doi: 10.1016/j.fct.2011.07.068
Marriott, B. P., Hunt, K. J., Malek, A. M. & Newman, J. C. Trends in intake of energy and total sugar from sugar-sweetened beverages in the United States among children and adults, NHANES 2003–2016. Nutrients 11, 2004 (2019).
doi: 10.3390/nu11092004 pmcid: 6770750
Vos, M. B. et al. Added sugars and cardiovascular disease risk in children: a scientific statement from the American Heart Association. Circulation 135, e1017–e1034 (2017).
pubmed: 27550974 doi: 10.1161/CIR.0000000000000439
Schwimmer, J. B. et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 321, 256–265 (2019).
pubmed: 30667502 pmcid: 6440226 doi: 10.1001/jama.2018.20579
Smajis, S. et al. Metabolic effects of a prolonged, very-high-dose dietary fructose challenge in healthy subjects. Am. J. Clin. Nutr. 111, 369–377 (2020).
pubmed: 31796953 doi: 10.1093/ajcn/nqz271
Yki-Jarvinen, H. Nutritional modulation of non-alcoholic fatty liver disease and insulin resistance. Nutrients 7, 9127–9138 (2015).
pubmed: 26556368 pmcid: 4663582 doi: 10.3390/nu7115454
Frayn, K. N., Arner, P. & Yki-Jarvinen, H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 42, 89–103 (2006).
pubmed: 17144882 doi: 10.1042/bse0420089
Weintraub, M. S., Zechner, R., Brown, A., Eisenberg, S. & Breslow, J. L. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J. Clin. Invest. 82, 1884–1893 (1988).
pubmed: 3058748 pmcid: 442768 doi: 10.1172/JCI113806
Mensink, R. P., Zock, P. L., Kester, A. D. & Katan, M. B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77, 1146–1155 (2003).
pubmed: 12716665 doi: 10.1093/ajcn/77.5.1146
Desmarchelier, C., Borel, P., Lairon, D., Maraninchi, M. & Valero, R. Effect of nutrient and micronutrient intake on chylomicron production and postprandial lipemia. Nutrients 11, 1299 (2019).
pmcid: 6627366 doi: 10.3390/nu11061299

Auteurs

Hannele Yki-Järvinen (H)

Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland. Hannele.Yki-Jarvinen@helsinki.fi.
Minerva Foundation Institute for Medical Research, Helsinki, Finland. Hannele.Yki-Jarvinen@helsinki.fi.

Panu K Luukkonen (PK)

Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
Minerva Foundation Institute for Medical Research, Helsinki, Finland.
Department of Internal Medicine, Yale University, New Haven, CT, USA.

Leanne Hodson (L)

Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK.

J Bernadette Moore (JB)

School of Food Science & Nutrition, University of Leeds, Leeds, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH