A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.

Autonomously oscillatory flow Cellular microenvironment Dynamic biochemical signals Dynamic shear stress Microfluidic chip

Journal

Electrophoresis
ISSN: 1522-2683
Titre abrégé: Electrophoresis
Pays: Germany
ID NLM: 8204476

Informations de publication

Date de publication:
11 2021
Historique:
revised: 10 06 2021
received: 30 04 2021
accepted: 05 07 2021
pubmed: 20 7 2021
medline: 3 3 2022
entrez: 19 7 2021
Statut: ppublish

Résumé

Biological cells in vivo typically reside in a dynamic flowing microenvironment with extensive biomechanical and biochemical cues varying in time and space. These dynamic biomechanical and biochemical signals together act to regulate cellular behaviors and functions. Microfluidic technology is an important experimental platform for mimicking extracellular flowing microenvironment in vitro. However, most existing microfluidic chips for generating dynamic shear stress and biochemical signals require expensive, large peripheral pumps and external control systems, unsuitable for being placed inside cell incubators to conduct cell biology experiments. This study has developed a microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Further, based on the lumped-parameter and distributed-parameter models of multiscale fluid dynamics, the oscillatory flow field and the concentration field of biochemical factors has been simulated at the cell culture region within the designed microfluidic chip. Using the constructed experimental system, the feasibility of the designed microfluidic chip has been validated by simulating biochemical factors with red dye. The simulation results demonstrate that dynamic shear stress and biochemical signals with adjustable period and amplitude can be generated at the cell culture chamber within the microfluidic chip. The amplitudes of dynamic shear stress and biochemical signals is proportional to the pressure difference and inversely proportional to the flow resistance, while their periods are correlated positively with the flow capacity and the flow resistance. The experimental results reveal the feasibility of the designed microfluidic chip. Conclusively, the proposed microfluidic generator based on autonomously oscillatory flow can generate dynamic shear stress and biochemical signals without peripheral pumps and external control systems. In addition to reducing the experimental cost, due to the tiny volume, it is beneficial to be integrated into cell incubators for cell biology experiments. Thus, the proposed microfluidic chip provides a novel experimental platform for cell biology investigations.

Identifiants

pubmed: 34278592
doi: 10.1002/elps.202100128
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2264-2272

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Young, E. W. K., Beebe, D. J., Chem. Soc. Rev. 2010, 39, 1036-1048.
Discher, D. E., Mooney, D. J., Zandstra, P. W., Science 2009, 324, 1673-1677.
Kaunas, R., Kang H. J., Bayless K. J., Cell. Mol. Bioeng. 2011, 4, 547-559.
Student, S., Milewska, M., Ostrowski, Z., Gut, K., Wandzik, I., Mater. Sci. Eng. C 2021, 119, 111647.
Uto, K., Tsui, J. H., DeForest, C. A., Kim, D. H., Prog. Polym. Sci. 2017, 65, 53-82.
Bussmann, J., Wolfe, S. A., Siekmann, A. F., Development 2011, 138, 1717-1726.
Nigro, P., Abe, J., Berk, B. C., Antioxid. Redox Signaling 2011, 15, 1405-1414.
Li, Y. S. J., Haga, J. H., Chien, S., J. Biomech. 2005, 38, 1949-1971.
Simon, C., Brandenberger, G., Diabetes 2002, 51, S258-S261.
Mullur, R., Liu, Y. Y., Brent, G. A., Physiol. Rev. 2014, 94, 355-382.
Knott, J. G., Kurokawa, M., Fissore, R. A., Dev. Biol. 2003, 260, 536-547.
Millership, J. E., Heard, C., Fearon, I. M., Bruce, J. I. E., J. Membr. Biol. 2010, 235, 191-210.
Habeck, M., Haviv, H., Katz, A., Kapri, P. E., Ayciriex, S., Shevchenko, A., Ogawa, H., Toyoshima, C., Karlish, S. J. D., J. Biol. Chem. 2015, 290, 4829-4842.
Bein, A., Shin, W., Jalili-Firoozinezhad, S., Park, M. H., Sontheimer-Phelps, A., Tovaglieri, A., Chalkiadaki, A., Kim, H. J., Ingber, D. E., Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 659-668.
Godbey, W. T., Atala, A., Ann. N. Y. Acad. Sci. 2002, 961, 10-26.
Mccalla, S. E., Tripathi, A., Annu. Rev. Biomed. Eng. 2011, 13, 321-343.
Breslauer, D. N., Lee, P. J., Lee, L. P., Mol. BioSyst. 2006, 2, 97-112.
Estrada, R., Giridharan, G. A., Nguyen, M. D., Roussel, T. J., Shakeri, M., Parichehreh, V., Prabhu, S. D., Sethu, P., Anal. Chem. 2011, 83, 3170-3177.
Yamada, A., Katanosaka, Y., Mohri, S., Naruse, K., IEEE Trans. Nanobiosci. 2009, 8, 306-311.
Lee, C. S., Lee, S. H., Kim, Y. G., Choi, C. H., Kim, Y. K., Kim, B. G., Biotechnol. Bioprocess Eng. 2006, 11, 146-153.
Cao, L. R., Zhang, X. Y., Grimley, A., Lomasney, A. R., Roper, M. G., Anal. Bioanal. Chem. 2010, 398, 1985-1991.
Chung, B. G., Lin, F., Jeon, N. L., Lab Chip 2006, 6, 764-768.
Oh, K. W., Lee, K., Ahn, B., Furlani, E. P., Lab Chip 2012, 12, 515-545.
Chung, K. H., Hong, J. W., Lee, D. S., Yoon, H. C., Anal. Chim. Acta 2007, 585, 1-10.
Raimbault, V., Rebiere, D., Dejous, C., Guirardel, M., Conedera, V., Sens. Actuators A 2008, 142, 160-165.
Kim, S. J., Lai, D., Park, J. Y., Yokokawa, R., Takayama, S., Small 2012, 8, 2925-2934.
Shin, J., Park, H., Dang, V. B., Kim, C. W., Kim, S. J., RSC Adv. 2015, 5, 23239-23245.
Lee, J., Estlack, Z., Somaweera, H., Wang, X. M., Lacerda, C. M. R., Kim, J., Lab Chip 2018, 18, 2946-2954.
Dang, V. B., Kim, S. J., Lab Chip 2017, 17, 286-292.
Kim, S. J., Yokokawa, R., Takayama, S., Lab Chip 2013, 13, 1644-1648.
Leslie, D. C., Easley, C. J., Seker, E., Karlinsey, J. M., Utz, M., Begley, M. R., Landers, J. P., Nat. Phys. 2009, 5, 231-235.
Xia, H. M., Wang, Z. P., Fan, W., Wijaya, A., Wang, W., Wang, Z. F., Lab Chip 2012, 12, 60-64.

Auteurs

Yong-Jiang Li (YJ)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

Wen-Jia Zhang (WJ)

School of Biomedical Engineering, Dalian University of Technology, Dalian, P. R. China.

Chen-Lin Zhan (CL)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

Ke-Jie Chen (KJ)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

Chun-Dong Xue (CD)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

Yu Wang (Y)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

Xiao-Ming Chen (XM)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

Kai-Rong Qin (KR)

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China.

Articles similaires

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
Calcium Carbonate Sand Powders Construction Materials Materials Testing

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Low-cost portable sensor for rapid and sensitive detection of Pb

Niloufar Amin, Jiangang Chen, Qing Cao et al.
1.00
Lead Electric Capacitance Limit of Detection Electrodes Electrochemical Techniques

Classifications MeSH