A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
Autonomously oscillatory flow
Cellular microenvironment
Dynamic biochemical signals
Dynamic shear stress
Microfluidic chip
Journal
Electrophoresis
ISSN: 1522-2683
Titre abrégé: Electrophoresis
Pays: Germany
ID NLM: 8204476
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
10
06
2021
received:
30
04
2021
accepted:
05
07
2021
pubmed:
20
7
2021
medline:
3
3
2022
entrez:
19
7
2021
Statut:
ppublish
Résumé
Biological cells in vivo typically reside in a dynamic flowing microenvironment with extensive biomechanical and biochemical cues varying in time and space. These dynamic biomechanical and biochemical signals together act to regulate cellular behaviors and functions. Microfluidic technology is an important experimental platform for mimicking extracellular flowing microenvironment in vitro. However, most existing microfluidic chips for generating dynamic shear stress and biochemical signals require expensive, large peripheral pumps and external control systems, unsuitable for being placed inside cell incubators to conduct cell biology experiments. This study has developed a microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Further, based on the lumped-parameter and distributed-parameter models of multiscale fluid dynamics, the oscillatory flow field and the concentration field of biochemical factors has been simulated at the cell culture region within the designed microfluidic chip. Using the constructed experimental system, the feasibility of the designed microfluidic chip has been validated by simulating biochemical factors with red dye. The simulation results demonstrate that dynamic shear stress and biochemical signals with adjustable period and amplitude can be generated at the cell culture chamber within the microfluidic chip. The amplitudes of dynamic shear stress and biochemical signals is proportional to the pressure difference and inversely proportional to the flow resistance, while their periods are correlated positively with the flow capacity and the flow resistance. The experimental results reveal the feasibility of the designed microfluidic chip. Conclusively, the proposed microfluidic generator based on autonomously oscillatory flow can generate dynamic shear stress and biochemical signals without peripheral pumps and external control systems. In addition to reducing the experimental cost, due to the tiny volume, it is beneficial to be integrated into cell incubators for cell biology experiments. Thus, the proposed microfluidic chip provides a novel experimental platform for cell biology investigations.
Identifiants
pubmed: 34278592
doi: 10.1002/elps.202100128
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2264-2272Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Young, E. W. K., Beebe, D. J., Chem. Soc. Rev. 2010, 39, 1036-1048.
Discher, D. E., Mooney, D. J., Zandstra, P. W., Science 2009, 324, 1673-1677.
Kaunas, R., Kang H. J., Bayless K. J., Cell. Mol. Bioeng. 2011, 4, 547-559.
Student, S., Milewska, M., Ostrowski, Z., Gut, K., Wandzik, I., Mater. Sci. Eng. C 2021, 119, 111647.
Uto, K., Tsui, J. H., DeForest, C. A., Kim, D. H., Prog. Polym. Sci. 2017, 65, 53-82.
Bussmann, J., Wolfe, S. A., Siekmann, A. F., Development 2011, 138, 1717-1726.
Nigro, P., Abe, J., Berk, B. C., Antioxid. Redox Signaling 2011, 15, 1405-1414.
Li, Y. S. J., Haga, J. H., Chien, S., J. Biomech. 2005, 38, 1949-1971.
Simon, C., Brandenberger, G., Diabetes 2002, 51, S258-S261.
Mullur, R., Liu, Y. Y., Brent, G. A., Physiol. Rev. 2014, 94, 355-382.
Knott, J. G., Kurokawa, M., Fissore, R. A., Dev. Biol. 2003, 260, 536-547.
Millership, J. E., Heard, C., Fearon, I. M., Bruce, J. I. E., J. Membr. Biol. 2010, 235, 191-210.
Habeck, M., Haviv, H., Katz, A., Kapri, P. E., Ayciriex, S., Shevchenko, A., Ogawa, H., Toyoshima, C., Karlish, S. J. D., J. Biol. Chem. 2015, 290, 4829-4842.
Bein, A., Shin, W., Jalili-Firoozinezhad, S., Park, M. H., Sontheimer-Phelps, A., Tovaglieri, A., Chalkiadaki, A., Kim, H. J., Ingber, D. E., Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 659-668.
Godbey, W. T., Atala, A., Ann. N. Y. Acad. Sci. 2002, 961, 10-26.
Mccalla, S. E., Tripathi, A., Annu. Rev. Biomed. Eng. 2011, 13, 321-343.
Breslauer, D. N., Lee, P. J., Lee, L. P., Mol. BioSyst. 2006, 2, 97-112.
Estrada, R., Giridharan, G. A., Nguyen, M. D., Roussel, T. J., Shakeri, M., Parichehreh, V., Prabhu, S. D., Sethu, P., Anal. Chem. 2011, 83, 3170-3177.
Yamada, A., Katanosaka, Y., Mohri, S., Naruse, K., IEEE Trans. Nanobiosci. 2009, 8, 306-311.
Lee, C. S., Lee, S. H., Kim, Y. G., Choi, C. H., Kim, Y. K., Kim, B. G., Biotechnol. Bioprocess Eng. 2006, 11, 146-153.
Cao, L. R., Zhang, X. Y., Grimley, A., Lomasney, A. R., Roper, M. G., Anal. Bioanal. Chem. 2010, 398, 1985-1991.
Chung, B. G., Lin, F., Jeon, N. L., Lab Chip 2006, 6, 764-768.
Oh, K. W., Lee, K., Ahn, B., Furlani, E. P., Lab Chip 2012, 12, 515-545.
Chung, K. H., Hong, J. W., Lee, D. S., Yoon, H. C., Anal. Chim. Acta 2007, 585, 1-10.
Raimbault, V., Rebiere, D., Dejous, C., Guirardel, M., Conedera, V., Sens. Actuators A 2008, 142, 160-165.
Kim, S. J., Lai, D., Park, J. Y., Yokokawa, R., Takayama, S., Small 2012, 8, 2925-2934.
Shin, J., Park, H., Dang, V. B., Kim, C. W., Kim, S. J., RSC Adv. 2015, 5, 23239-23245.
Lee, J., Estlack, Z., Somaweera, H., Wang, X. M., Lacerda, C. M. R., Kim, J., Lab Chip 2018, 18, 2946-2954.
Dang, V. B., Kim, S. J., Lab Chip 2017, 17, 286-292.
Kim, S. J., Yokokawa, R., Takayama, S., Lab Chip 2013, 13, 1644-1648.
Leslie, D. C., Easley, C. J., Seker, E., Karlinsey, J. M., Utz, M., Begley, M. R., Landers, J. P., Nat. Phys. 2009, 5, 231-235.
Xia, H. M., Wang, Z. P., Fan, W., Wijaya, A., Wang, W., Wang, Z. F., Lab Chip 2012, 12, 60-64.