Radiation shielding and safety implications following linac conversion to an electron FLASH-RT unit.
FLASH-RT
radiation protection
small animal RT
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
revised:
03
06
2021
received:
04
02
2021
accepted:
12
07
2021
pubmed:
22
7
2021
medline:
23
9
2021
entrez:
21
7
2021
Statut:
ppublish
Résumé
Due to their finite range, electrons are typically ignored when calculating shielding requirements in megavoltage energy linear accelerator vaults. However, the assumption that 16 MeV electrons need not be considered does not hold when operated at FLASH-RT dose rates (~200× clinical dose rate), where dose rate from bremsstrahlung photons is an order of magnitude higher than that from an 18 MV beam for which shielding was designed. We investigate the shielding and radiation protection impact of converting a Varian 21EX linac to FLASH-RT dose rates. We performed a radiation survey in all occupied areas using a Fluke Biomedical Inovision 451P survey meter and a Wide Energy Neutron Detection Instrument (Wendi)-2 FHT 762 neutron detector. The dose rate from activated linac components following a 1.8-min FLASH-RT delivery was also measured. When operated at a gantry angle of 180° such as during biology experiments, the 16 MeV FLASH-RT electrons deliver ~10 µSv/h in the controlled areas and 780 µSv/h in the uncontrolled areas, which is above the 20 µSv in any 1-h USNRC limit. However, to exceed 20 µSv, the unit must be operated continuously for 92 s, which corresponds in this bunker and FLASH-RT beam to a 3180 Gy workload at isocenter, which would be unfeasible to deliver within that timeframe due to experimental logistics. While beam steering and dosimetry activities can require workloads of that magnitude, during these activities, the gantry is positioned at 0° and the dose rate in the uncontrolled area becomes undetectable. Likewise, neutron activation of linac components can reach 25 µSv/h near the isocenter following FLASH-RT delivery, but dissipates within minutes, and total doses within an hour are below 20 µSv. Bremsstrahlung photons created by a 16 MeV FLASH-RT electron beam resulted in consequential dose rates in controlled and uncontrolled areas, and from activated linac components in the vault. While our linac vault shielding proved sufficient, other investigators would be prudent to confirm the adequacy of their radiation safety program, particularly if operating in vaults designed for 6 MV.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5396-5405Informations de copyright
© 2021 American Association of Physicists in Medicine.
Références
Esplen NM, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol. Published online. 2020;65(23). doi:https://doi.org/10.1088/1361-6560/abaa28
Montay-Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother Oncol. 2017;124(3):365-369. doi:https://doi.org/10.1016/j.radonc.2017.05.003
Bourhis J, Montay-Gruel P, Gonçalves Jorge P, et al. Clinical translation of FLASH radiotherapy: why and how? Radiother Oncol. 2019;139:11-17. doi:https://doi.org/10.1016/j.radonc.2019.04.008
Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245). doi:https://doi.org/10.1126/scitranslmed.3008973
Vozenin M-C, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin Cancer Res. 2019;25(1):35-42. doi:https://doi.org/10.1158/1078-0432.CCR-17-3375
Vozenin MC, Hendry JH, Limoli CL. Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken. Clin Oncol. 2019;31(7):407-415. doi:https://doi.org/10.1016/j.clon.2019.04.001
Bazalova-Carter M, Esplen N. On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates. Med Phys. 2019;46(12):5690-5695. doi:https://doi.org/10.1002/mp.13858
IntraOp Medical Corporation. IntraOp and OSU Announce Collaboration in FLASH. https://www.prnewswire.com/news-releases/intraop-and-osu-announce-collaboration-in-flash-301093140.html
Montay-Gruel P, Bouchet A, Jaccard M, et al. X-rays can trigger the FLASH effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother Oncol. 2018;129(3):582-588. doi:https://doi.org/10.1016/j.radonc.2018.08.016
Diffenderfer ES, Verginadis II, Kim MM, et al. Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system. Int J Radiat Oncol Biol Phys. 2020;106(2):440-448. doi:https://doi.org/10.1016/j.ijrobp.2019.10.049
Schüler E, Trovati S, King G, et al. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Int J Radiat Oncol Biol Phys. 2017;97(1):195-203. doi:https://doi.org/10.1016/j.ijrobp.2016.09.018
Maxim PG, Tantawi SG, Loo BW. PHASER: a platform for clinical translation of FLASH cancer radiotherapy. Radiother Oncol. 2019;139:28-33. doi:https://doi.org/10.1016/j.radonc.2019.05.005
Lempart M, Blad B, Adrian G, et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiother Oncol. 2019;139:40-45. doi:https://doi.org/10.1016/j.radonc.2019.01.031
NCRP. NCRP Report No. 151, Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities; 2009.
Jaradat AK, Biggs PJ. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV X rays in concrete for beams of cone angles between 0° and 14° calculated by Monte Carlo simulation. Health Phys. 2007;92(5):456-463. doi:https://doi.org/10.1097/01.HP.0000254920.02129.fd
Podgorsak EB. Radiation Physics for Medical Physicists; 2006. doi:https://doi.org/10.1007/3-540-29471-6
Podgorsak EB, Rawlinson JA, Glavinovic MI, Johns HE. Design of X ray targets for high energy linear accelerators in radiotherapy. Amer J Roentgenol. 1974;121(4):873-882. doi:https://doi.org/10.2214/ajr.121.4.873
Podgorsak EB, Rawlinson JA, Johns HE. X-ray depth doses from linear accelerators in the energy range from 10 to 32 MeV. Am J Roentgenol Radium Therm Nucl Med. 1975;123(1):182-191.
Wang Y, Easterling SB, Ting JY. Ion recombination corrections of ionization chambers in flattening filter-free photon radiation. J Appl Clin Med Phys. 2012;13(5):262-268. doi:https://doi.org/10.1120/jacmp.v13i5.3758
Almond PR, Biggs PJ, Coursey BM, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870. doi:https://doi.org/10.1118/1.598691
Laitano RF, Guerra AS, Pimpinella M, Caporali C, Petrucci A. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse. Phys Med Biol. 2006;51(24):6419-6436. doi:https://doi.org/10.1088/0031-9155/51/24/009
Jaccard M, Petersson K, Buchillier T, et al. High dose-per-pulse electron beam dosimetry: usability and dose-rate independence of EBT3 Gafchromic films: usability. Med Phys. 2017;44(2):725-735. doi:https://doi.org/10.1002/mp.12066
Karsch L, Beyreuther E, Burris-Mog T, et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Med Phys. 2012;39(5):2447-2455. doi:https://doi.org/10.1118/1.3700400
Ashraf MR, Rahman M, Zhang R, et al. Dosimetry for FLASH radiotherapy: a review of tools and the role of radioluminescence and Cherenkov emission. Front Phys. 2020;8. doi:https://doi.org/10.3389/fphy.2020.00328
León-Marroquín EY, Mulrow D, Darafsheh A, Khan R. Response characterization of EBT-XD radiochromic films in megavoltage photon and electron beams. Med Phys. 2019;46(9):4246-4256. doi:https://doi.org/10.1002/mp.13708
Jorge PG, Jaccard M, Petersson K, et al. Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiother Oncol. 2019;139:34-39. doi:https://doi.org/10.1016/j.radonc.2019.05.004
Rahman M, Ashraf MR, Zhang R, et al. Electron FLASH delivery at treatment room isocenter for efficient reversible conversion of a clinical LINAC. Int J Radiat Oncol Biol Phys. 2021;110:872-882. doi:https://doi.org/10.1016/j.ijrobp.2021.01.011
Zhu TC, Das IJ, Bjärngard BE. Characteristics of bremsstrahlung in electron beams. Annu Int Conf IEEE Eng Med Biol - Proc. 2000;4:2498-2501. doi:https://doi.org/10.1109/iembs.2000.901330
Varian. Varian Monte Carlo phase space filed for TrueBeam. Accessed October 19, 2020. http://myvarian.com/montecarlo
Salvat F, Fernández-Varea JM, Sempau J. PENELOPE-2011: a code system for Monte Carlo simulation of electron and photon transport. Work Proc. 2011;(November).
Sempau J, Badal A, Brualla L. A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys. 2011;38(11):5887-5895. doi:https://doi.org/10.1118/1.3643029
Walker RL. A Summary of Shielding Constants for Concrete. 1961. http://www.osti.gov/scitech/biblio/4813435
IAEA. Safety Reports Series No. 47-Radiation Protection in the Design of Radiotherapy Facilities. 2006. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1223_web.pdf
Nath R, Boyer A, La RP, McCall R. Neutron measurements around high energy x-ray radiotherapy machines. AAPM Rep No 19. 1986;(19).
Yücel H, Çobanbaş I, Kolbaşi A, Yüksel AÖ, Kaya V. Measurement of photo-neutron dose from an 18-MV medical linac using a foil activation method in view of radiation protection of patients. Nucl Eng Technol. 2016;48(2):525-532. doi:https://doi.org/10.1016/j.net.2015.11.003
Taleyarkhan RP. Monitoring neutron radiation in extreme gamma/x-ray radiation fields. Sensors. 2020;20(3). doi:https://doi.org/10.3390/s20030640
Caresana M, Denker A, Esposito A, et al. Intercomparison of radiation protection instrumentation in a pulsed neutron field. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2014;737:203-213. doi:https://doi.org/10.1016/j.nima.2013.11.073
Nelson WR, LaRiviere PD. Primary and leakage radiation calculations at 6, 10 and 25 mev. Health Phys. 1984;47(6):811-818. doi:https://doi.org/10.1097/00004032-198412000-00001