Determination of the optimal range for virtual monoenergetic images in dual-energy CT based on physical quality parameters.
CT
dual-energy and spectral
head and neck
quality control
quantitative imaging/analysis
radiotherapy
virtual monoenergetic
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
revised:
29
06
2021
received:
10
03
2021
accepted:
12
07
2021
pubmed:
22
7
2021
medline:
23
9
2021
entrez:
21
7
2021
Statut:
ppublish
Résumé
Virtual monoenergetic images (VMI) obtained from Dual-Energy Computed Tomography (DECT) with iodinated contrast are used in radiotherapy of the Head and Neck to improve the delineation of target volumes and organs at-risk (OAR). The energies used to vary from 40 to 70 keV, but noise at low keV and the use of Single Energy CT (SECT) at low kV We compared the quality of the VMI series at 40-60 keV versus single X-ray tube voltage computed tomography (SECT) at 80 and 120 kV The entire series met the minimum quality requirements. However, the one at 40 keV presented uniformity at the limits of acceptability. The high- and low-contrast resolutions were similar between series. The noise of the VMI series decreased with increasing energy, while sensitivity to the contrast displayed the opposite behavior. All series showed linearity of HUs from very low iodine concentrations. Images at 60 keV presented lower iodine sensitivity than SECT at 80 kV Our method of image comparison based on standard quality parameters in phantom gave clear results about the optimal range and can be used as a guide to characterize any other DECT imaging protocols. The optimal range for using VMI images in iodinated contrasts in the Siemens system was 45-55 keV. Lower energies lacked noise and uniformity, while higher ones could be substituted by SECT images at low kilovoltage (80 kV
Substances chimiques
Contrast Media
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5085-5095Informations de copyright
© 2021 American Association of Physicists in Medicine.
Références
Nelson G, Pigrish V, Sarkar V, Su FC, Salter B. Technical Note: The use of DirectDensityTM and dual-energy CT in the radiation oncology clinic. J Appl Clin Med Phys. 2019;20(3):125-131. doi:10.1002/acm2.12546
McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology. 2015;276(3):637-653. doi:10.1148/radiol.2015142631
Sudarski S, Apfaltrer P, W. Nance J, et al. Optimization of keV-settings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging. Eur J Radiol. 2013;82(10):e574-e581. doi:10.1016/j.ejrad.2013.04.040
Delesalle M-A, Pontana F, Duhamel A, et al. Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology. 2013;267(1):256-266. doi:10.1148/radiol.12120195
Shinohara Y, Sakamoto M, Iwata N, et al. Usefulness of monochromatic imaging with metal artifact reduction software for computed tomography angiography after intracranial aneurysm coil embolization. Acta Radiol. 2014;55(8):1015-1023. doi:10.1177/0284185113510492
Wichmann JL, Nöske E-M, Kraft J, et al. Virtual monoenergetic dual-energy computed tomography: Optimization of kiloelectron volt settings in head and neck cancer. Invest Radiol. 2014;49(11):735-741. doi:10.1097/RLI.0000000000000077
McNitt-Gray M. MO-A-ValB-01: Tradeoffs in image quality and radiation dose for CT. Med Phys. 2006;33:2154-2155. doi:10.1118/1.2241390
Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371-6379. doi:10.1118/1.3658568
International Commission on Radiation Units and Measurements. ICRU Report No. 87: Radiation dose and image-quality assessment in computed tomography. J ICRU. 2012;12(1):1-149. doi:10.1093/jicru/ndt007
International Atomic Energy Agency. Quality Assurance Programme for Computed Tomography: Diagnostic and Therapy Applications. Human Health Series No. 19. Vienna: IAEA; 2012.
Samei E, Bakalyar D, Boedeker KL, et al. Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233. Med Phys. 2019;46 (11). doi:10.1002/mp.13763
Droege RT, Morin RL. A practical method to measure the MTF of CT scanners. Med Phys. 1982;9(5):758-760. doi:10.1118/1.595124
Judy PF. The line spread function and modulation transfer function of a computed tomographic scanner. Med Phys. 1976;3(4):233-236. doi:10.1118/1.594283
Samei E, Flynn MJ, Reimann DA. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys. 1998;25(1):102-113. doi:10.1118/1.598165
Rossmann K. Point spread-function, line spread-function, and modulation transfer function. Tools for the study of imaging systems. Radiology. 1969;93(2):257-272. doi:10.1148/93.2.257
Chen B, Christianson O, Wilson JM, Samei E. Assessment of volumetric noise and resolution performance for linear and nonlinear CT reconstruction methods. Med Phys. 2014;41(7):071909. doi:10.1118/1.4881519.071909
Chao EH, Toth TL, Bromberg NB, Williams EC, Fox SH, Carleton DA. A statistical method of defining low contrast detectability. Radiology. 2000;217:162.
Seibert JA. Tradeoffs between image quality and dose. Pediatr Radiol. 2004;34(Suppl 3):S183-S241. doi:10.1007/s00247-004-1268-7
Alvarez R, Seppi E. A comparison of noise and dose in conventional and energy selective computed tomography. IEEE Trans Nucl Sci. 1979;26(8):2853-2856. doi:10.1109/TNS.1979.4330549
Dolly S, Chen HC, Anastasio M, Mutic S, Li H. Practical considerations for noise power spectra estimation for clinical CT scanners. J Appl Clin Med Phys. 2016;17(3):392-407. doi:10.1120/jacmp.v17i3.5841
Code of Federal Regulations, Title 21, vol. 8, subchapter J. Part 1020.33. Food and Drug Administration (FDA), April 2020.
Yang K, Kwan AL, Huang SY, Packard NJ, Boone JM. Noise power properties of a cone-beam CT system for breast cancer detection. Med Phys. 2008;35(12):5317-5327. doi:10.1118/1.3002411
American College of Radiology CT Accreditation Program, link: http://www.acraccreditation.org/Modalities/CT.
American College of Radiology. Computed Tomography Quality Program v.2017. Link: https://www.acr.org/-/media/ACR/NOINDEX/QC-Manuals/CT_QCManual.pdf
Albrecht MH, Vogl TJ, Martin SS, et al. Review of clinical applications for virtual monoenergetic dual-energy CT. Radiology. 2019;293(2):260-271. doi:10.1148/radiol.2019182297
D'Angelo T, Cicero G, Mazziotti S, et al. Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol. 2019;92(1098):20180546. doi:10.1259/bjr.20180546
Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: Improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259(1):257-262. doi:10.1148/radiol.11100978
Leithner D, Mahmoudi S, Wichmann JL, et al. Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: Effects on image quality, artefacts and diagnostic performance for the detection of stenosis. Eur J Radiol. 2018;99:111-117. doi:10.1016/j.ejrad.2017.12.024
Gulliksrud K, Stokke C, Martinsen AC. How to measure CT image quality: variations in CT-numbers, uniformity and low contrast resolution for a CT quality assurance phantom. Phys Med. 2014;30(4):521-526. doi:10.1016/j.ejmp.2014.01.006
IEC 61223-2-6 International Electrotechnical Commission. Evaluation and routine testing in medical imaging departments. Part 2-6: Constancy tests - Imaging performance of computed tomography X-ray equipment. IEC 61223-2-6. 2nd ed. Geneva: IEC; 2006:1-67
Anam C, Fujibuchi T, Budi WS, Haryanto F, Dougherty G. An algorithm for automated modulation transfer function measurement using an edge of a PMMA phantom: Impact of field of view on spatial resolution of CT images. J Appl Clin Med Phys. 2018;19(6):244-252. doi:10.1002/acm2.12476
D'Angelo T, Cicero G, Mazziotti S, et al. Dual energy computed tomography virtual monoenergetic imaging: Technique and clinical applications. Br J Radiol. 2019;92(1098):20180546. doi:10.1259/bjr.20180546
Albrecht MH, Scholtz J-E, Kraft J, et al. Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer. Eur Radiol. 2015;25(8):2493-2501. doi:10.1007/s00330-015-3627-1