Incidental axillary dose delivery to axillary lymph node levels I-III by different techniques of whole-breast irradiation: a systematic literature review.
Breast neoplasms
Intensity-modulated radiotherapy
Radiotherapy
Radiotherapy dosage
Three-dimensional radiotherapy
Journal
Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
ISSN: 1439-099X
Titre abrégé: Strahlenther Onkol
Pays: Germany
ID NLM: 8603469
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
received:
28
12
2020
accepted:
13
06
2021
pubmed:
23
7
2021
medline:
1
4
2022
entrez:
22
7
2021
Statut:
ppublish
Résumé
In breast cancer treatment, radiotherapy is an essential component for locoregional management. Axillary recurrence in patients with invasive breast carcinoma remains an issue. The question of whether breast irradiation may unintentionally include levels I, II, and III, and may decrease the risk of axillary recurrence, remains a topic of discussion. A literature search was performed in PubMed and the Cochrane Library to identify articles that have published data regarding dose-volume analysis of axillary levels in breast irradiation. The following MESH terms were used: "breast cancer/lymph nodes" AND "radiotherapy dosage." Thirteen articles were identified. The irradiation technique, initial dose prescribed to the breast, delineated volumes, and dose received at axillary levels were heterogeneous. The average dose delivered to axilla levels I, II, and III with three-dimensional conformal radiotherapy using standard fields (ST) ranged between 22 and 43.5 Gy, 3 and 35.6 Gy, and 1.0 and 20.5 Gy, respectively. The average doses delivered to axilla levels I, II, and III with three-dimensional conformal radiotherapy using "high tangential" fields (HT) ranged between 38 and 49.7 Gy, 11 and 47.1 Gy, and 5 and 44.7 Gy, respectively. Finally, the average doses delivered to axilla levels I, II, and III using intensity-modulated radiation therapy (IMRT) were between 14.5 and 42.6 Gy, 3.4 and 35 Gy, and 1.2 and 25.5 Gy, respectively. Our literature review suggests that the incidental dose delivered to the axilla during whole-breast irradiation is heterogenous and dependent on the irradiation technique used. However, whether this observation can be translated into a therapeutic effect is still a matter of debate.
Sections du résumé
BACKGROUND AND OBJECTIVE
OBJECTIVE
In breast cancer treatment, radiotherapy is an essential component for locoregional management. Axillary recurrence in patients with invasive breast carcinoma remains an issue. The question of whether breast irradiation may unintentionally include levels I, II, and III, and may decrease the risk of axillary recurrence, remains a topic of discussion.
PATIENTS AND METHODS
METHODS
A literature search was performed in PubMed and the Cochrane Library to identify articles that have published data regarding dose-volume analysis of axillary levels in breast irradiation. The following MESH terms were used: "breast cancer/lymph nodes" AND "radiotherapy dosage."
RESULTS
RESULTS
Thirteen articles were identified. The irradiation technique, initial dose prescribed to the breast, delineated volumes, and dose received at axillary levels were heterogeneous. The average dose delivered to axilla levels I, II, and III with three-dimensional conformal radiotherapy using standard fields (ST) ranged between 22 and 43.5 Gy, 3 and 35.6 Gy, and 1.0 and 20.5 Gy, respectively. The average doses delivered to axilla levels I, II, and III with three-dimensional conformal radiotherapy using "high tangential" fields (HT) ranged between 38 and 49.7 Gy, 11 and 47.1 Gy, and 5 and 44.7 Gy, respectively. Finally, the average doses delivered to axilla levels I, II, and III using intensity-modulated radiation therapy (IMRT) were between 14.5 and 42.6 Gy, 3.4 and 35 Gy, and 1.2 and 25.5 Gy, respectively.
CONCLUSION
CONCLUSIONS
Our literature review suggests that the incidental dose delivered to the axilla during whole-breast irradiation is heterogenous and dependent on the irradiation technique used. However, whether this observation can be translated into a therapeutic effect is still a matter of debate.
Identifiants
pubmed: 34292348
doi: 10.1007/s00066-021-01808-y
pii: 10.1007/s00066-021-01808-y
doi:
Types de publication
Journal Article
Review
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
820-828Informations de copyright
© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
National Comprehensive Cancer Network (2020) NCCN clinical practice guidelines in oncology. NCCN, Fort Washington
Belkacémi Y, Fourquet A, Cutuli B et al (2011) Radiotherapy for invasive breast cancer: Guidelines for clinical practice from the French expert review board of Nice/Saint-Paul de Vence. Crit Rev Oncol Hematol 79:91–102. https://doi.org/10.1016/j.critrevonc.2010.06.002
doi: 10.1016/j.critrevonc.2010.06.002
pubmed: 20615725
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Davies C, Godwin J et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–784. https://doi.org/10.1016/S0140-6736(11)60993-8
doi: 10.1016/S0140-6736(11)60993-8
Hughes KS, Schnaper LA, Bellon JR et al (2013) Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of CALGB 9343. J Clin Oncol 31:2382–2387. https://doi.org/10.1200/JCO.2012.45.2615
doi: 10.1200/JCO.2012.45.2615
pubmed: 23690420
pmcid: 3691356
Poortmans PM, Weltens C, Fortpied C et al (2020) Internal mammary and medial supraclavicular lymph node chain irradiation in stage I–III breast cancer (EORTC 22922/10925): 15-year results of a randomised, phase 3 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(20)30472-1
doi: 10.1016/S1470-2045(20)30472-1
pubmed: 33152293
Whelan TJ, Olivotto IA, Parulekar WR et al (2015) Regional nodal irradiation in early-stage breast cancer. N Engl J Med 373:307–316. https://doi.org/10.1056/NEJMoa1415340
doi: 10.1056/NEJMoa1415340
pubmed: 26200977
pmcid: 4556358
Thorsen LBJ, Offersen BV, Danø H et al (2016) DBCG-IMN: a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer. J Clin Oncol 34:314–320. https://doi.org/10.1200/JCO.2015.63.6456
doi: 10.1200/JCO.2015.63.6456
pubmed: 26598752
Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998. https://doi.org/10.1056/NEJMoa1209825
doi: 10.1056/NEJMoa1209825
pubmed: 23484825
Galimberti V, Cole BF, Zurrida S et al (2013) Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol 14:297–305. https://doi.org/10.1016/S1470-2045(13)70035-4
doi: 10.1016/S1470-2045(13)70035-4
pubmed: 23491275
pmcid: 3935346
Solá M, Alberro JA, Fraile M et al (2013) Complete axillary lymph node dissection versus clinical follow-up in breast cancer patients with sentinel node micrometastasis: final results from the multicenter clinical trial AATRM 048/13/2000. Ann Surg Oncol 20:120–127. https://doi.org/10.1245/s10434-012-2569-y
doi: 10.1245/s10434-012-2569-y
pubmed: 22956062
Giuliano AE, Ballman KV, McCall L et al (2017) Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (alliance) randomized clinical trial. JAMA 318:918–926. https://doi.org/10.1001/jama.2017.11470
doi: 10.1001/jama.2017.11470
pubmed: 28898379
pmcid: 5672806
Donker M, Slaets L, van Tienhoven G, Rutgers EJT (2015) Axillary lymph node dissection versus axillary radiotherapy in patients with a positive sentinel node: the AMAROS trial. Ned Tijdschr Geneeskd 159:A9302
pubmed: 26488192
Latosinsky S, Berrang TS, Cutter CS et al (2012) CAGS and ACS Evidence Based Reviews in Surgery. 40. Axillary dissection versus no axillary dissection in women with invasive breast cancer and sentinel node metastasis. Can J Surg 55:66–69. https://doi.org/10.1503/cjs.036011
doi: 10.1503/cjs.036011
pubmed: 22269305
pmcid: 3270088
Meattini I, De Santis MC, De Rose F et al (2020) Local treatment of the Axilla in early breast cancer: so many questions, still few answers. Clin Oncol 32:e37–e38. https://doi.org/10.1016/j.clon.2019.08.001
doi: 10.1016/j.clon.2019.08.001
Jagsi R, Chadha M, Moni J et al (2014) Radiation field design in the ACOSOG Z0011 (Alliance) Trial. J Clin Oncol 32:3600–3606. https://doi.org/10.1200/JCO.2014.56.5838
doi: 10.1200/JCO.2014.56.5838
pubmed: 25135994
pmcid: 4220042
Haffty BG, Hunt KK, Harris JR, Buchholz TA (2011) Positive sentinel nodes without axillary dissection: implications for the radiation oncologist. J Clin Oncol 29:4479–4481. https://doi.org/10.1200/JCO.2011.36.1667
doi: 10.1200/JCO.2011.36.1667
pubmed: 22042942
Krag DN, Anderson SJ, Julian TB et al (2010) Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B‑32 randomised phase 3 trial. Lancet Oncol 11:927–933. https://doi.org/10.1016/S1470-2045(10)70207-2
doi: 10.1016/S1470-2045(10)70207-2
pubmed: 20863759
pmcid: 3041644
van Wely BJ, Smidt ML, de Kievit IM et al (2008) False-negative sentinel lymph node biopsy. Br J Surg 95:1352–1355. https://doi.org/10.1002/bjs.6348
doi: 10.1002/bjs.6348
pubmed: 18844270
van Wely BJ, Teerenstra S, Schinagl a DX et al (2011) Systematic review of the effect of external beam radiation therapy to the breast on axillary recurrence after negative sentinel lymph node biopsy. Br J Surg 98:326–333. https://doi.org/10.1002/bjs.7360
doi: 10.1002/bjs.7360
pubmed: 21254004
Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
doi: 10.1371/journal.pmed.1000097
pubmed: 19621072
pmcid: 2707599
Jacobson G, Bunda-Randall N, Wen S, Miller M (2017) Axillary lymph node coverage with 3‑dimensional tangential field irradiation and correlation with heart and lung dose. Adv Radiat Oncol 2:630–635. https://doi.org/10.1016/j.adro.2017.07.005
doi: 10.1016/j.adro.2017.07.005
pubmed: 29204531
pmcid: 5707414
Belkacemi Y, Bigorie V, Pan Q et al (2014) Breast radiotherapy (RT) using tangential fields (TgF): a prospective evaluation of the dose distribution in the sentinel lymph node (SLN) area as determined intraoperatively by clip placement. Ann Surg Oncol 21:3758–3765. https://doi.org/10.1245/s10434-014-3966-1
doi: 10.1245/s10434-014-3966-1
pubmed: 25096388
pmcid: 4189004
Krasin M, McCall A, King S et al (2000) Evaluation of a standard breast tangent technique: a dose-volume analysis of tangential irradiation using three-dimensional tools. Int J Radiat Oncol 47:327–333. https://doi.org/10.1016/S0360-3016(00)00449-1
doi: 10.1016/S0360-3016(00)00449-1
Aristei C, Chionne F, Marsella AR et al (2001) Evaluation of level I and II axillary nodes included in the standard breast tangential fields and calculation of the administered dose: results of a prospective study. Int J Radiat Oncol 51:69–73. https://doi.org/10.1016/S0360-3016(01)01595-4
doi: 10.1016/S0360-3016(01)01595-4
Orecchia R, Huscher A, Leonardi MC et al (2005) Irradiation with standard tangential breast fields in patients treated with conservative surgery and sentinel node biopsy: using a three-dimensional tool to evaluate the first level coverage of the axillary nodes. Br J Radiol 78:51–54. https://doi.org/10.1259/bjr/29242407
doi: 10.1259/bjr/29242407
pubmed: 15673530
Reed DR, Lindsley SK, Mann GN et al (2005) Axillary lymph node dose with tangential breast irradiation. Int J Radiat Oncol Biol Phys 61:358–364. https://doi.org/10.1016/j.ijrobp.2004.06.006
doi: 10.1016/j.ijrobp.2004.06.006
pubmed: 15667953
Reznik J, Cicchetti MG, Degaspe B, Fitzgerald TJ (2005) Analysis of axillary coverage during tangential radiation therapy to the breast. Int J Radiat Oncol 61:163–168. https://doi.org/10.1016/j.ijrobp.2004.04.065
doi: 10.1016/j.ijrobp.2004.04.065
Alço G, Iğdem SI, Ercan T et al (2010) Coverage of axillary lymph nodes with high tangential fields in breast radiotherapy. BJR 83:1072–1076. https://doi.org/10.1259/bjr/25788274
doi: 10.1259/bjr/25788274
pubmed: 21088091
pmcid: 3473605
Borm KJ, Oechsner M, Düsberg M et al (2020) Irradiation of regional lymph node areas in breast cancer—Dose evaluation according to the Z0011, AMAROS, EORTC 10981-22023 and MA-20 field design. Radiother Oncol 142:195–201. https://doi.org/10.1016/j.radonc.2019.08.021
doi: 10.1016/j.radonc.2019.08.021
pubmed: 31540747
Kataria T, Bisht SS, Gupta D et al (2013) Incidental radiation to axilla in early breast cancer treated with intensity modulated tangents and comparison with conventional and 3D conformal tangents. Breast 22:1125–1129. https://doi.org/10.1016/j.breast.2013.07.054
doi: 10.1016/j.breast.2013.07.054
pubmed: 24012148
Zhang L, Yang Z, Chen X et al (2015) Dose coverage of axillary level I–III areas during whole breast irradiation with simplified intensity modulated radiation therapy in early stage breast cancer patients. Oncotarget 6:18183–18191
doi: 10.18632/oncotarget.4301
Lee J, Kim S‑W, Son SH (2016) Dosimetric evaluation of incidental irradiation to the axilla during whole breast radiotherapy for patients with left-sided early breast cancer in the IMRT era. Medicine 95:e4036. https://doi.org/10.1097/MD.0000000000004036
doi: 10.1097/MD.0000000000004036
pubmed: 27368030
pmcid: 4937944
Mayinger M, Borm KJ, Dreher C et al (2019) Incidental dose distribution to locoregional lymph nodes of breast cancer patients undergoing adjuvant radiotherapy with tomotherapy – is it time to adjust current contouring guidelines to the radiation technique? Radiat Oncol. https://doi.org/10.1186/s13014-019-1328-7
doi: 10.1186/s13014-019-1328-7
pubmed: 31533742
pmcid: 6749713
De Santis MC, Bonfantini F, Dispinzieri M et al (2016) Axillary coverage by whole breast irradiation in 1 to 2 positive sentinel lymph nodes in breast cancer patients. Tumori Journal 102(4):409–413
doi: 10.5301/tj.5000482
Li XA, Tai A, Arthur DW et al (2009) Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys 73:944–951. https://doi.org/10.1016/j.ijrobp.2008.10.034
doi: 10.1016/j.ijrobp.2008.10.034
pubmed: 19215827
pmcid: 2911777
Weaver DL, Ashikaga T, Krag DN et al (2011) Effect of occult metastases on survival in node-negative breast cancer. N Engl J Med 364:412–421. https://doi.org/10.1056/NEJMoa1008108
doi: 10.1056/NEJMoa1008108
pubmed: 21247310
pmcid: 3044504
Livi L, Meattini I, Marrazzo L et al (2015) Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5‑year survival analysis of a phase 3 randomised controlled trial. Eur J Cancer 51:451–463. https://doi.org/10.1016/j.ejca.2014.12.013
doi: 10.1016/j.ejca.2014.12.013
pubmed: 25605582
Coles CE, Griffin CL, Kirby AM et al (2017) Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5‑year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 390:1048–1060. https://doi.org/10.1016/S0140-6736(17)31145-5
doi: 10.1016/S0140-6736(17)31145-5
pubmed: 28779963
pmcid: 5594247
Vicini FA, Cecchini RS, White JR et al (2019) Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early-stage breast cancer: a randomised, phase 3, equivalence trial. Lancet 394:2155–2164. https://doi.org/10.1016/S0140-6736(19)32514-0
doi: 10.1016/S0140-6736(19)32514-0
pubmed: 31813636
pmcid: 7199428
Whelan TJ, Julian JA, Berrang TS et al (2019) External beam accelerated partial breast irradiation versus whole breast irradiation after breast conserving surgery in women with ductal carcinoma in situ and node-negative breast cancer (RAPID): a randomised controlled trial. Lancet 394:2165–2172. https://doi.org/10.1016/S0140-6736(19)32515-2
doi: 10.1016/S0140-6736(19)32515-2
pubmed: 31813635
Gentilini O, Botteri E, Leonardi MC et al (2017) Ipsilateral axillary recurrence after breast conservative surgery: The protective effect of whole breast radiotherapy. Radiother Oncol 122:37–44. https://doi.org/10.1016/j.radonc.2016.12.021
doi: 10.1016/j.radonc.2016.12.021
pubmed: 28063695
Galimberti V, Cole BF, Viale G et al (2018) Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol 19:1385–1393. https://doi.org/10.1016/S1470-2045(18)30380-2
doi: 10.1016/S1470-2045(18)30380-2
pubmed: 30196031
Withers HR, Suwinski R (1998) Radiation dose response for subclinical metastases. Semin Radiat Oncol 8:224–228. https://doi.org/10.1016/S1053-4296(98)80048-9
doi: 10.1016/S1053-4296(98)80048-9
pubmed: 9634499
Marks LB (1990) A standard dose of radiation for “microscopic disease” is not appropriate. Cancer 66:2498–2502. https://doi.org/10.1002/1097-0142(19901215)66:12%3C2498::AID-CNCR2820661209%3E3.0.CO;2-X
doi: 10.1002/1097-0142(19901215)66:12%3C2498::AID-CNCR2820661209%3E3.0.CO;2-X
pubmed: 2249190
Hellman S (1997) Stopping metastases at their source. N Engl J Med 337:996–997. https://doi.org/10.1056/NEJM199710023371408
doi: 10.1056/NEJM199710023371408
pubmed: 9309106
Jatoi I, Benson JR, Kunkler I (2018) Hypothesis: can the abscopal effect explain the impact of adjuvant radiotherapy on breast cancer mortality? NPJ Breast Cancer 4:8. https://doi.org/10.1038/s41523-018-0061-y
doi: 10.1038/s41523-018-0061-y
pubmed: 29644338
pmcid: 5882959
Berg JW (1955) The significance of axillary node levels in the study of breast carcinoma. Cancer 8:776–778
doi: 10.1002/1097-0142(1955)8:4<776::AID-CNCR2820080421>3.0.CO;2-B
Moher D, Liberati A, Tetzlaff J et al The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097
doi: 10.1371/journal.pmed1000097
pubmed: 19621072
pmcid: 2707599