Purification and characterization of an amyloidogenic repeat domain from the functional amyloid Pmel17.
Aggregation
Amyloid
Disaggregation
TEM
Tryptophan fluorescence
Journal
Protein expression and purification
ISSN: 1096-0279
Titre abrégé: Protein Expr Purif
Pays: United States
ID NLM: 9101496
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
21
05
2021
revised:
16
07
2021
accepted:
17
07
2021
pubmed:
23
7
2021
medline:
29
1
2022
entrez:
22
7
2021
Statut:
ppublish
Résumé
The pre-melanosomal protein (Pmel17) is a human functional amyloid that supports melanin biosynthesis within melanocytes. This occurs in the melanosome, a membrane-bound organelle with an acidic intraluminal pH. The repeat region of Pmel17 (RPT, residues 315-444) has been previously shown to form amyloid aggregates under acidic melanosomal conditions, but not under neutral cytosolic conditions, when expressed and purified using a C-terminal hexa-histidine tag (RPT-His). Given the importance of protonation states in RPT-His aggregation, we questioned whether the histidine tag influenced the pH-dependent behavior. In this report, we generated a tagless RPT by inserting a tobacco etch virus (TEV) protease recognition sequence (ENLYGQ(G/S)) immediately upstream of a native glycine residue at position 312 in Pmel17. After purification of the fusion construct using a histidine tag, cleavage with TEV protease generated a fully native RPT (nRPT) spanning resides 312-444. We characterized the aggregation of nRPT, which formed amyloid fibrils under acidic conditions (pH ≤ 6) but not at neutral pH. Characterizing the morphologies of nRPT aggregates using transmission electron microscopy revealed a pH-dependent maturation from short, curved structures at pH 4 to paired, rod-like fibrils at pH 6. This was accompanied by a secondary structural transition from mixed random coil/β-sheet at pH 4 to canonical β-sheet at pH 6. We also show that pre-formed nRPT fibrils undergo disaggregation upon dilution into pH 7 buffer. More broadly, this strategy can be utilized to generate native amyloidogenic domains from larger proteins by utilizing intrinsic N-terminal glycine or serine residues.
Identifiants
pubmed: 34293440
pii: S1046-5928(21)00127-3
doi: 10.1016/j.pep.2021.105944
pmc: PMC8403166
mid: NIHMS1727861
pii:
doi:
Substances chimiques
Amyloid
0
Fluorescent Dyes
0
PMEL protein, human
0
Protein Aggregates
0
gp100 Melanoma Antigen
0
Serine
452VLY9402
Histidine
4QD397987E
Endopeptidases
EC 3.4.-
TEV protease
EC 3.4.-
Glycine
TE7660XO1C
Types de publication
Journal Article
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
105944Subventions
Organisme : Intramural NIH HHS
ID : ZIA HL006034
Pays : United States
Informations de copyright
Published by Elsevier Inc.
Références
J Mol Biol. 2014 Dec 12;426(24):4074-4086
pubmed: 25451784
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21447-52
pubmed: 21106765
Biochemistry. 2003 Aug 5;42(30):9022-7
pubmed: 12885235
J Biol Chem. 2006 Jul 28;281(30):21198-21208
pubmed: 16682408
J Biol Chem. 2011 Mar 11;286(10):8385-8393
pubmed: 21148556
J Mol Biol. 2020 Nov 20;432(23):6173-6186
pubmed: 33068637
J Cell Biol. 2015 Aug 17;210(4):529-39
pubmed: 26283796
PLoS Biol. 2006 Jan;4(1):e6
pubmed: 16300414
Biomolecules. 2017 Jun 29;7(3):
pubmed: 28661450
Annu Rev Biochem. 2017 Jun 20;86:69-95
pubmed: 28125289
Methods Enzymol. 1999;309:274-84
pubmed: 10507030
J Phys Chem B. 2017 Jan 19;121(2):412-419
pubmed: 28005369
Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96
pubmed: 24854788
Isr J Chem. 2017 Jul;57(7-8):613-621
pubmed: 28993712
Biochim Biophys Acta. 2005 Aug 10;1751(2):119-39
pubmed: 16027053
J Mol Biol. 2018 Oct 12;430(20):3696-3706
pubmed: 29886018
J Phys Chem B. 2021 Apr 22;125(15):3781-3789
pubmed: 33835818
J Cell Biol. 2001 Feb 19;152(4):809-24
pubmed: 11266471
Biochemistry. 2011 Dec 13;50(49):10567-9
pubmed: 22092386
Nat Commun. 2021 Mar 12;12(1):1620
pubmed: 33712624
Biochim Biophys Acta Proteins Proteom. 2019 May;1867(5):519-528
pubmed: 30471451
Science. 2009 Jul 17;325(5938):328-32
pubmed: 19541956
Chembiochem. 2014 Jul 21;15(11):1569-72
pubmed: 24954152
Biochim Biophys Acta Proteins Proteom. 2019 Oct;1867(10):961-969
pubmed: 30716507
Trends Biochem Sci. 2007 May;32(5):217-24
pubmed: 17412596
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19726-31
pubmed: 19033461
Chem Commun (Camb). 2018 Jun 21;54(51):6983-6986
pubmed: 29774336
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13731-6
pubmed: 19666488
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22671-22673
pubmed: 32868414
Biophys J. 2011 Nov 2;101(9):2242-50
pubmed: 22067164
Methods Mol Biol. 2017;1586:221-230
pubmed: 28470608
J Biol Chem. 2020 May 22;295(21):7544-7553
pubmed: 32277052