Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae.


Journal

International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108

Informations de publication

Date de publication:
11 2021
Historique:
received: 19 10 2020
accepted: 30 06 2021
revised: 23 06 2021
pubmed: 25 7 2021
medline: 2 2 2022
entrez: 24 7 2021
Statut: ppublish

Résumé

The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. WT, IL-4Rα-deficient (IL-4Rα We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.

Identifiants

pubmed: 34302121
doi: 10.1038/s41366-021-00902-6
pii: 10.1038/s41366-021-00902-6
pmc: PMC8528699
doi:

Substances chimiques

Interleukin-4 207137-56-2
Fructose 30237-26-4

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

2377-2387

Subventions

Organisme : NIDDK NIH HHS
ID : P30 DK078392
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM083204
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM063483
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK099222
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI118697
Pays : United States

Informations de copyright

© 2021. The Author(s).

Références

Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ.Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index) et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–67.
pubmed: 21295846 pmcid: 4472365 doi: 10.1016/S0140-6736(10)62037-5
Charrez B, Qiao L, Hebbard L. The role of fructose in metabolism and cancer. Horm Mol Biol Clin Investig. 2015;22:79–89.
pubmed: 25965509
Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 2016;61:1282–93.
pubmed: 26856717 pmcid: 4838515 doi: 10.1007/s10620-016-4054-0
Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, et al. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci. 2020;57:308–22.
Softic S, Gupta MK, Wang GX, Fujisaka S, O'Neill BT, Rao TN, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 2017;127:4059–74.
pubmed: 28972537 pmcid: 5663363 doi: 10.1172/JCI94585
Cioffi F, Senese R, Lasala P, Ziello A, Mazzoli A, Crescenzo R, et al. Fructose-rich diet affects mitochondrial DNA damage and repair in rats. Nutrients. 2017;9:4.
doi: 10.3390/nu9040323
Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression. Curr Drug Targets. 2015;16:1315–23.
pubmed: 26028039 pmcid: 4929857 doi: 10.2174/1389450116666150531153627
Braunersreuther V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J Gastroenterol. 2012;18:727–35.
pubmed: 22371632 pmcid: 3286135 doi: 10.3748/wjg.v18.i8.727
Luzina IG, Keegan AD, Heller NM, Rook GA, Shea-Donohue T, Atamas SP. Regulation of inflammation by interleukin-4: a review of “alternatives”. J Leukoc Biol. 2012;92:753–64.
pubmed: 22782966 pmcid: 3441310 doi: 10.1189/jlb.0412214
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.
pubmed: 20510870 doi: 10.1016/j.immuni.2010.05.007
Andrews AL, Holloway JW, Holgate ST, Davies DE. IL-4 receptor alpha is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. J Immunol. 2006;176:7456–61.
pubmed: 16751391 doi: 10.4049/jimmunol.176.12.7456
Idzerda RL, March CJ, Mosley B, Lyman SD, Vanden Bos T, Gimpel SD, et al. Human interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily. J Exp Med. 1990;171:861–73.
pubmed: 2307934 doi: 10.1084/jem.171.3.861
Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P, et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science. 1993;262:1880–3.
pubmed: 8266078 doi: 10.1126/science.8266078
Obiri NI, Debinski W, Leonard WJ, Puri RK. Receptor for interleukin 13. Interaction with interleukin 4 by a mechanism that does not involve the common gamma chain shared by receptors for interleukins 2, 4, 7, 9, and 15. J Biol Chem. 1995;270:8797–804.
pubmed: 7721786 doi: 10.1074/jbc.270.15.8797
Junttila IS, Creusot RJ, Moraga I, Bates DL, Wong MT, Alonso MN, et al. Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat Chem Biol. 2012;8:990–8.
pubmed: 23103943 pmcid: 3508151 doi: 10.1038/nchembio.1096
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine. 2015;75:38–50.
pubmed: 26187331 pmcid: 4546937 doi: 10.1016/j.cyto.2015.05.023
Pritchard MA, Baker E, Whitmore SA, Sutherland GR, Idzerda RL, Park LS, et al. The interleukin-4 receptor gene (IL4R) maps to 16p11.2-16p12.1 in human and to the distal region of mouse chromosome 7. Genomics. 1991;10:801–6.
pubmed: 1679753 doi: 10.1016/0888-7543(91)90466-R
Mito N, Hosoda T, Kato C, Sato K. Change of cytokine balance in diet-induced obese mice. Metabolism. 2000;49:1295–300.
pubmed: 11079819 doi: 10.1053/meta.2000.9523
Ji Y, Sun S, Xia S, Yang L, Li X, Qi L. Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin-4. J Biol Chem. 2012;287:24378–86.
pubmed: 22645141 pmcid: 3397864 doi: 10.1074/jbc.M112.371807
Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, Jouihan H, Morel CR, Heredia JE, et al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci USA. 2010;107:22617–22622.
pubmed: 21149710 pmcid: 3012500 doi: 10.1073/pnas.1009152108
Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res. 2014;55:385–97.
pubmed: 24347527 pmcid: 3934724 doi: 10.1194/jlr.M041392
Lizcano F, Vargas D, Gomez A, Torrado A. Human ADMC-derived adipocyte thermogenic capacity is regulated by IL-4 receptor. Stem Cells Int. 2017;2017:2767916.
pubmed: 29158739 pmcid: 5660824 doi: 10.1155/2017/2767916
Fischer K, Ruiz HH, Jhun K, Finan B, Oberlin DJ, van der Heide V, et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med. 2017;23:623–630.
pubmed: 28414329 pmcid: 5420449 doi: 10.1038/nm.4316
Cappelletti M, Presicce P, Lawson MJ, Chaturvedi V, Stankiewicz TE, Vanoni S, et al. Type I interferons regulate susceptibility to inflammation-induced preterm birth. JCI Insight. 2017;2:e91288.
pubmed: 28289719 pmcid: 5333966 doi: 10.1172/jci.insight.91288
Giles DA, Moreno-Fernandez ME, Stankiewicz TE, Graspeuntner S, Cappelletti M, Wu D, et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat Med. 2017;23:829–838.
pubmed: 28604704 pmcid: 5596511 doi: 10.1038/nm.4346
Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M, et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology. 2014;59:1830–9.
pubmed: 24115079 doi: 10.1002/hep.26746
Moreno-Fernandez ME et al. Peroxisomal beta-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight. 2018;3:e93626.
Chan CC, Damen M, Moreno-Fernandez ME, Stankiewicz TE, Cappelletti M, Alarcon PC, et al. Type I interferon sensing unlocks dormant adipocyte inflammatory potential. Nat Commun. 2020;11:2745.
pubmed: 32488081 pmcid: 7265526 doi: 10.1038/s41467-020-16571-4
Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010;52:934–44.
pubmed: 20607689 doi: 10.1002/hep.23797
Castañeda TR, Abplanalp W, Um SH, Pfluger PT, Schrott B, Brown K, et al. Metabolic control by S6 kinases depends on dietary lipids. PLoS One. 2012;7:e32631.
pubmed: 22412899 pmcid: 3296718 doi: 10.1371/journal.pone.0032631
Giles DA, Moreno-Fernandez ME, Stankiewicz TE, Cappelletti M, Huppert SS, Iwakura Y, et al. Regulation of inflammation by IL-17A and IL-17F modulates non-alcoholic fatty liver disease pathogenesis. PLoS One. 2016;11:e0149783.
pubmed: 26895034 pmcid: 4760740 doi: 10.1371/journal.pone.0149783
Softic S, Meyer JG, Wang GX, Gupta MK, Batista TM, Lauritzen H, et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019;30:735–753 e4.
pubmed: 31577934 pmcid: 7816129 doi: 10.1016/j.cmet.2019.09.003
Softic S, Boucher J, Solheim MH, Fujisaka S, Haering MF, Homan EP, et al. Lipodystrophy due to adipose tissue-specific insulin receptor knockout results in progressive NAFLD. Diabetes. 2016;65:2187–200.
pubmed: 27207510 pmcid: 4955986 doi: 10.2337/db16-0213
Tschöp MH, Speakman JR, Arch JR, Auwerx J, Brüning JC, Chan L, et al. A guide to analysis of mouse energy metabolism. Nat Methods. 2011;9:57–63.
pubmed: 22205519 pmcid: 3654855 doi: 10.1038/nmeth.1806
Neves AL, Coelho J, Couto L, Leite-Moreira A, Roncon-Albuquerque R Jr. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 2013;51:R51–64.
pubmed: 23943858 doi: 10.1530/JME-13-0079
Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007;37:50–7.
pubmed: 17300698 doi: 10.1111/j.1872-034X.2007.00008.x
Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes. 2006;55:2392–7.
pubmed: 16873706 doi: 10.2337/db06-0391
Wong RH, Sul HS. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol. 2010;10:684–91.
pubmed: 20817607 pmcid: 3092640 doi: 10.1016/j.coph.2010.08.004
Grabherr F, Grander C, Effenberger M, Adolph TE, Tilg H. Gut dysfunction and non-alcoholic fatty liver disease. Front Endocrinol (Lausanne). 2019;10:611.
doi: 10.3389/fendo.2019.00611
Tappy L, Le KA, Tran C, Paquot N. Fructose and metabolic diseases: new findings, new questions. Nutrition. 2010;26:1044–9.
pubmed: 20471804 doi: 10.1016/j.nut.2010.02.014
Junttila IS. Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol. 2018;9:888.
pubmed: 29930549 pmcid: 6001902 doi: 10.3389/fimmu.2018.00888
Dufort FJ, Bleiman BF, Gumina MR, Blair D, Wagner DJ, Roberts MF, et al. Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J Immunol. 2007;179:4953–7.
pubmed: 17911579 doi: 10.4049/jimmunol.179.8.4953
Bray GA, Popkin BM. Sugar consumption by Americans and obesity are both too high-are they connected? Response to letter by John White, PhD. Pediatr Obes. 2014;9:e78–9.
pubmed: 25213296 doi: 10.1111/ijpo.214
Klurfeld DM, Foreyt J, Angelopoulos TJ, Rippe JM. Lack of evidence for high fructose corn syrup as the cause of the obesity epidemic. Int J Obes (Lond). 2013;37:771–3.
doi: 10.1038/ijo.2012.157
Zhang DM, Jiao RQ, Kong LD. High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients. 2017;9:4.
Shi J, Fan J, Su Q, Yang Z. Cytokines and abnormal glucose and lipid metabolism. Front Endocrinol. 2019;10:703
doi: 10.3389/fendo.2019.00703
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5:415–25.
pubmed: 17550777 doi: 10.1016/j.cmet.2007.05.003
Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal. 2013;19:269–84.
pubmed: 22900819 pmcid: 3691913 doi: 10.1089/ars.2012.4875
Ter Horst KW, Serlie MJ. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017;9:9.
doi: 10.3390/nu9010009
Flannery C, Dufour S, Rabol R, Shulman GI, Petersen KF. Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes. 2012;61:2711–7.
pubmed: 22829450 pmcid: 3478531 doi: 10.2337/db12-0206
Chen MZ, Hudson CA, Vincent EE, de Berker DA, May MT, Hers I, et al. Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer. 2011;104:1755–61.
doi: 10.1038/bjc.2011.132
Zamorano J, Wang HY, Wang LM, Pierce JH, Keegan AD. IL-4 protects cells from apoptosis via the insulin receptor substrate pathway and a second independent signaling pathway. J Immunol. 1996;157:4926–34.
pubmed: 8943397
Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510:84–91.
pubmed: 24899308 pmcid: 4489847 doi: 10.1038/nature13478
Hirst SJ, Hallsworth MP, Peng Q, Lee TH. Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1beta and is mediated by the interleukin-4 receptor alpha-chain. Am J Respir Crit Care Med. 2002;165:1161–71.
pubmed: 11956062 doi: 10.1164/ajrccm.165.8.2107158
Guillot C, Coathalem H, Chetritt J, David A, Lowenstein P, Gilbert E, et al. Lethal hepatitis after gene transfer of IL-4 in the liver is independent of immune responses and dependent on apoptosis of hepatocytes: a rodent model of IL-4-induced hepatitis. J Immunol. 2001;166:5225–35.
pubmed: 11290807 doi: 10.4049/jimmunol.166.8.5225
Goenka S, Kaplan MH. Transcriptional regulation by STAT6. Immunol Res. 2011;50:87–96.
pubmed: 21442426 pmcid: 3107597 doi: 10.1007/s12026-011-8205-2
Leavy O. Cytokines: Regulating energy stores. Nat Rev Immunol. 2011;11:76.
pubmed: 21467981 doi: 10.1038/nri2924
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine. 2015;75:25–37.
pubmed: 26073683 pmcid: 5118948 doi: 10.1016/j.cyto.2015.05.008
Zhu J, Cote-Sierra J, Guo L, Paul WE. Stat5 activation plays a critical role in Th2 differentiation. Immunity. 2003;19:739–48.
pubmed: 14614860 doi: 10.1016/S1074-7613(03)00292-9
Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12:295–303.
pubmed: 21358638 pmcid: 3077821 doi: 10.1038/ni.2005
Chan CC, Harley ITW, Pfluger PT, Trompette A, Stankiewicz TE, Allen JL, et al. A BAFF/APRIL axis regulates obesogenic diet-driven weight gain. Nat Commun. 2021;12.
Moreno-Fernandez ME, Giles DA, Oates JR, Chan CC, Damen M.S.M.A, Doll JR, et al. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab. 2021;33:1187–1204.e9.
pubmed: 34004162 doi: 10.1016/j.cmet.2021.04.018

Auteurs

Michelle S M A Damen (MSMA)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Traci E Stankiewicz (TE)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Se-Hyung Park (SH)

Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.

Robert N Helsley (RN)

Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.

Calvin C Chan (CC)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Maria E Moreno-Fernandez (ME)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Jessica R Doll (JR)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Sara Szabo (S)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

De'Broski R Herbert (DR)

Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.

Samir Softic (S)

Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.
Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA.

Senad Divanovic (S)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. senad.divanovic@cchmc.org.
Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. senad.divanovic@cchmc.org.
Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA. senad.divanovic@cchmc.org.
Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA. senad.divanovic@cchmc.org.
Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. senad.divanovic@cchmc.org.

Articles similaires

Humans Meals Time Factors Female Adult
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH