Tissue N-Glycan Analysis Using LC-MS, MS/MS, and MS
2-aminopyridine
N-glycomics
SALSA
permethylation
reversed-phase liquid chromatography
Journal
Current protocols
ISSN: 2691-1299
Titre abrégé: Curr Protoc
Pays: United States
ID NLM: 101773894
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
entrez:
27
7
2021
pubmed:
28
7
2021
medline:
30
7
2021
Statut:
ppublish
Résumé
Tissue glycans usually contain various structures, from simple to highly complicated, in different quantities. N-Glycans are particularly heterogeneous, with up to pentaantennary structures, different branch sequences, and several isomeric structures. 2-Aminopyridine (PA) tagging on released N-glycans is useful for separating isomers and to quantitatively analyze both the major and minor glycan structures in tissues using reversed-phase liquid chromatography (LC)-mass spectrometry (MS) and MS/MS analysis. Because the structural differences of PA-N-glycans influence their retention on a reversed-phase C18 column, it is easy to deduce the core structure, including core Fuc and bisecting GlcNAc as well as the branching pattern of each PA-N-glycan, based on the results of elution position, full MS, and MS/MS analysis. If more detailed structural analysis is required, combining sequential exoglycosidase digestions, sialic acid linkage-specific alkylamidation (SALSA), and/or SALSA/permethylation is useful for determining glycosidic linkages of branches. This article includes detailed protocols for the preparation of N-glycans released from glycoproteins/glycopeptides by glycoamidase F or hydrazinolysis, PA-tagging of N-glycans, fractionation with anion-exchange chromatography, and chemical or enzymatic modifications of PA-N-glycans, as well as reversed-phase LC-MS, MS/MS, and MS
Substances chimiques
Polysaccharides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e200Subventions
Organisme : Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
ID : 25440014
Organisme : Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
ID : 20K06520
Organisme : the Sasaki Foundation for the Environment and Technology
Organisme : Uchida Energy Science Promotion Foundation
Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Abe, T., Kameyama, A., Natsuka, S., & Suzuki, N. (2020). Sequential modifications of glycans by linkage-specific alkylamidation of sialic acids and permethylation. Analytical Biochemistry, 606, 113861. doi: 10.1016/j.ab.2020.113861.
Boyd, P. N., Lines, A. C., & Patel, A. K. (1995). The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Molecular Immunology, 32(17-18), 1311-1318. doi: 10.1016/0161-5890(95)00118-2.
Fan, J. Q., Huynh, L. H., & Lee, Y. C. (1995). Purification of 2-aminopyridine derivatives of oligosaccharides and related compounds by cation-exchange chromatography. Analytical Biochemistry, 232(1), 65-68.
Fan, J. Q., & Lee, Y. C. (1997). Detailed studies on substrate structure requirements of glycoamidases A and F. Journal of Biological Chemistry, 272(43), 27058-27064. doi: 10.1074/jbc.272.43.27058.
Garcia-Casado, G., Sanchez-Monge, R., Chrispeels, M. J., Armentia, A., Salcedo, G., & Gomez, L. (1996). Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology, 6(4), 471-477. doi: 10.1093/glycob/6.4.471.
Hanamatsu, H., Nishikaze, T., Miura, N., Piao, J., Okada, K., Sekiya, S., … Furukawa, J. I. (2018). Sialic acid linkage specific derivatization of glycosphingolipid glycans by ring-opening aminolysis of lactones. Analytical Chemistry, 90(22), 13193-13199. doi: 10.1021/acs.analchem.8b02775.
Hanneman, A. J., Rosa, J. C., Ashline, D., & Reinhold, V. N. (2006). Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology, 16(9), 874-890. doi: 10.1093/glycob/cwl011.
Hanzawa, K., Suzuki, N., & Natsuka, S. (2017). Structures and developmental alterations of N-glycans of zebrafish embryos. Glycobiology, 27(3), 228-245. doi: 10.1093/glycob/cww124.
Hase, S., Ibuki, T., & Ikenaka, T. (1984). Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. Journal of Biochemistry, 95(1), 197-203.
Hase, S., Ikenaka, T., & Matsushima, Y. (1978). Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochemical and Biophysical Research Communications, 85(1), 257-263.
Hase, S., Koyama, S., Daiyasu, H., Takemoto, H., Hara, S., Kobayashi, Y., … Ikenaka, T. (1986). Structure of a sugar chain of a protease inhibitor isolated from Barbados pride (Caesalpinia pulcherrima Sw.) seeds. Journal of Biochemistry, 100(1), 1-10. doi: 10.1093/oxfordjournals.jbchem.a121681.
Ishihara, H., Takahashi, N., Oguri, S., & Tejima, S. (1979). Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. Journal of Biological Chemistry, 254(21), 10715-10719.
Jang-Lee, J., North, S. J., Sutton-Smith, M., Goldberg, D., Panico, M., Morris, H., … Dell, A. (2006). Glycomic profiling of cells and tissues by mass spectrometry: Fingerprinting and sequencing methodologies. Methods in Enzymology, 415, 59-86. doi: 10.1016/s0076-6879(06)15005-3.
Khoo, K. H., & Yu, S. Y. (2010). Mass spectrometric analysis of sulfated N- and O-glycans. Methods in Enzymology, 478, 3-26. doi: 10.1016/s0076-6879(10)78001-0.
Kondo, A., Suzuki, J., Kuraya, N., Hase, S., Kato, I., & Ikenaka, T. (1990). Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agricultural and Biological Chemistry, 54(8), 2169-2170.
Kuraya, N., & Hase, S. (1992). Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions. Journal of Biochemistry, 112(1), 122-126.
Murakami, T., Natsuka, S., Nakakita, S., & Hase, S. (2007). Structure determination of a sulfated N-glycans, candidate for a precursor of the selectin ligand in bovine lung. Glycoconjugate Journal, 24(4-5), 195-206. doi: 10.1007/s10719-006-9026-8.
Nakagawa, H., Kawamura, Y., Kato, K., Shimada, I., Arata, Y., & Takahashi, N. (1995). Identification of neutral and sialyl N-linked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Analytical Biochemistry, 226(1), 130-138.
Natsuka, S. (2012). One-step purification method for pyridylamino glycans. Bioscience, Biotechnology, and Biochemistry, 76(10), 1982-1983. doi: 10.1271/bbb.120388.
Natsuka, S., Hirohata, Y., Nakakita, S., Sumiyoshi, W., & Hase, S. (2011). Structural analysis of N-glycans of the planarian Dugesia japonica. FEBS Journal, 278(3), 452-460. doi: 10.1111/j.1742-4658.2010.07966.x.
Natsuka, S., Masuda, M., Sumiyoshi, W., & Nakakita, S. (2014). Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism. PloS One, 9(7), e102219. doi: 10.1371/journal.pone.0102219.
Nishikaze, T., Tsumoto, H., Sekiya, S., Iwamoto, S., Miura, Y., & Tanaka, K. (2017). Differentiation of sialyl linkage isomers by one-pot sialic acid derivatization for mass spectrometry-based glycan profiling. Analytical Chemistry, 89(4), 2353-2360. doi: 10.1021/acs.analchem.6b04150.
North, S. J., Jang-Lee, J., Harrison, R., Canis, K., Ismail, M. N., Trollope, A., … Haslam, S. M. (2010). Mass spectrometric analysis of mutant mice. Methods in Enzymology, 478, 27-77. doi: 10.1016/s0076-6879(10)78002-2.
Phillips, A. T., & Signs, M. W. (2005). Desalting, concentration, and buffer exchange by dialysis and ultrafiltration. Current Protocols in Protein Science, 38, 4.4.1-4.4.15. doi: 10.1002/0471140864.ps0404s38.
Schure, M. R., Rafferty, J. L., Ling, Z., & Siepmann, J. I. (2013). How reversed-phase liquid chromatography works. LC-GC North America, 31(8), 630-637.
Selman, M. H., Hemayatkar, M., Deelder, A. M., & Wuhrer, M. (2011). Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Analytical Chemistry, 83(7), 2492-2499. doi: 10.1021/ac1027116.
Shimizu, Y., Nakata, M., Kuroda, Y., Tsutsumi, F., Kojima, N., & Mizuochi, T. (2001). Rapid and simple preparation of N-linked oligosaccharides by cellulose-column chromatography. Carbohydrate Research, 332(4), 381-388. doi: 10.1016/s0008-6215(01)00113-6.
Staudacher, E., Altmann, F., März, L., Hård, K., Kamerling, J. P., & Vliegenthart, J. F. (1992). α1-6(α1-3)-difucosylation of the asparagine-bound N-acetylglucosamine in honeybee venom phospholipase A2. Glycoconjugate Journal, 9(2), 82-85. doi: 10.1007/bf00731703.
Stubbs, H. J., Shia, M. A., & Rice, K. G. (1997). Preparative purification of tetraantennary oligosaccharides from human asialyl orosomucoid. Analytical Biochemistry, 247(2), 357-365. doi: 10.1006/abio.1997.2070.
Suzuki, N., Abe, T., Hanzawa, K., & Natsuka, S. (2021). Toward robust N-glycomics of various tissue samples that may contain glycans with unknown or unexpected structures. Scientific Reports, 11(1), 6334. doi: 10.1038/s41598-021-84668-x.
Suzuki, N., Abe, T., & Natsuka, S. (2019). Quantitative LC-MS and MS/MS analysis of sialylated glycans modified by linkage-specific alkylamidation. Analytical Biochemistry, 567, 117-127. doi: 10.1016/j.ab.2018.11.014.
Suzuki, N., Khoo, K. H., Chen, H. C., Johnson, J. R., & Lee, Y. C. (2001). Isolation and characterizaion of major glycoproteins of pigeon egg white: Ubiquitous presence of unique N-glycans containing Galα1-4Gal. Journal of Biological Chemistry, 276(26), 23221-23229. doi: 10.1074/jbc.M101379200.
Takahashi, N. (1977). Demonstration of a new amidase acting on glycopeptides. Biochemical and Biophysical Research Communications, 76(4), 1194-1201. doi: 10.1016/0006-291×(77)90982-2.
Takahashi, N., & Nishibe, H. (1978). Some characteristics of a new glycopeptidase acting on aspartylglycosylamine linkages. Journal of Biochemistry, 84(6), 1467-1473. doi: 10.1093/oxfordjournals.jbchem.a132270.
Tanabe, K., & Ikenaka, K. (2006). In-column removal of hydrazine and N-acetylation of oligosaccharides released by hydrazionolysis. Analytical Biochemistry, 348(2), 324-326. doi: 10.1016/j.ab.2005.10.035.
Tokugawa, K., Oguri, S., & Takeuchi, M. (1996). Large scale preparation of PA-oligosaccharides from glycoproteins using an improved extraction method. Glycoconjugate Journal, 13(1), 53-56.
Tomiya, N., Awaya, J., Kurono, M., Endo, S., Arata, Y., & Takahashi, N. (1988). Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Analytical Biochemistry, 171(1), 73-90.
Tomiya, N., Kurono, M., Ishihara, H., Tejima, S., Endo, S., Arata, Y., & Takahashi, N. (1987). Structural analysis of N-linked oligosaccharides by a combination of glycopeptidase, exoglycosidases, and high-performance liquid chromatography. Analytical Biochemistry, 163(2), 489-499.
Tomiya, N., & Takahashi, N. (1998). Contribution of component monosaccharides to the coordinates of neutral and sialyl pyridylaminated N-glycans on a two-dimensional sugar map. Analytical Biochemistry, 264(2), 204-210.
Tretter, V., Altmann, F., & März, L. (1991). Peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached α1→3 to the asparagine-linked N-acetylglucosamine residue. European Journal of Biochemistry FEBS, 199(3), 647-652. doi: 10.1111/j.1432-1033.1991.tb16166.x.
Varki, A. (2017). Biological roles of glycans. Glycobiology, 27(1), 3-49. doi: 10.1093/glycob/cww086.
Varki, A., Cummings, R. D., Aebi, M., Packer, N. H., Seeberger, P. H., Esko, J. D., … Kornfeld, S. (2015). Symbol nomenclature for graphical representations of glycans. Glycobiology, 25(12), 1323-1324. doi: 10.1093/glycob/cwv091.
Wada, Y., Tajiri, M., & Yoshida, S. (2004). Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Analytical Chemistry, 76(22), 6560-6565. doi: 10.1021/ac049062o.
Wakabayashi, H., Natsuka, S., Mega, T., Otsuki, N., Isaji, M., Naotsuka, M., … Hase, S. (1999). Novel proteoglycan linkage tetrasaccharides of human urinary soluble thrombomodulin, SO4-3GlcAβ1-3Galβ1-3(±Siaα2-6)Galβ1-4Xyl. Journal of Biological Chemistry, 274(9), 5436-5442. doi: 10.1074/jbc.274.9.5436.
Wuhrer, M., Deelder, A. M., & van der Burgt, Y. E. (2011). Mass spectrometric glycan rearrangements. Mass Spectrometry Reviews, 30(4), 664-680. doi: 10.1002/mas.20337.
Wuhrer, M., Koeleman, C. A., Hokke, C. H., & Deelder, A. M. (2006). Mass spectrometry of proton adducts of fucosylated N-glycans: Fucose transfer between antennae gives rise to misleading fragments. Rapid Communications in Mass Spectrometry, 20(11), 1747-1754. doi: 10.1002/rcm.2509.
Yanagida, K., Natsuka, S., & Hase, S. (1999). A pyridylamination method aimed at automatic oligosaccharide analysis of N-linked sugar chains. Analytical Biochemistry, 274(2), 229-234. doi: 10.1006/abio.1999.4263.