Inhibition of HIPK2 Alleviates Thoracic Aortic Disease in Mice With Progressively Severe Marfan Syndrome.
Adult
Aortic Dissection
/ enzymology
Animals
Aorta, Thoracic
/ drug effects
Aortic Aneurysm, Thoracic
/ enzymology
Carrier Proteins
/ genetics
Dilatation, Pathologic
Disease Models, Animal
Disease Progression
Fibrillin-1
/ genetics
Humans
Male
Marfan Syndrome
/ complications
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Knockout
Protein Kinase Inhibitors
/ pharmacology
Protein Serine-Threonine Kinases
/ antagonists & inhibitors
Severity of Illness Index
Signal Transduction
Smad3 Protein
/ metabolism
Vascular Remodeling
/ drug effects
Marfan syndrome
aortic aneurysm
dissection
fibrillin-1
protein kinases
Journal
Arteriosclerosis, thrombosis, and vascular biology
ISSN: 1524-4636
Titre abrégé: Arterioscler Thromb Vasc Biol
Pays: United States
ID NLM: 9505803
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
pubmed:
30
7
2021
medline:
14
9
2021
entrez:
29
7
2021
Statut:
ppublish
Résumé
Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-β/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.
Identifiants
pubmed: 34320838
doi: 10.1161/ATVBAHA.121.316464
pmc: PMC8530207
mid: NIHMS1724710
doi:
Substances chimiques
Carrier Proteins
0
Fbn1 protein, mouse
0
Fibrillin-1
0
Protein Kinase Inhibitors
0
Smad3 Protein
0
Smad3 protein, mouse
0
HIPK2 protein, human
EC 2.7.1.-
Hipk2 protein, mouse
EC 2.7.1.-
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2483-2493Subventions
Organisme : NHLBI NIH HHS
ID : P01 HL134605
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR069307
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK088541
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL126173
Pays : United States
Références
Nucleic Acids Res. 2018 Jul 2;46(W1):W171-W179
pubmed: 29800326
Nat Genet. 2017 Jan;49(1):97-109
pubmed: 27893734
Science. 2011 Apr 15;332(6027):358-61
pubmed: 21493862
J Clin Invest. 2014 Feb;124(2):755-67
pubmed: 24401272
Nat Rev Mol Cell Biol. 2012 Oct;13(10):616-30
pubmed: 22992590
Nat Med. 2012 Mar 11;18(4):580-8
pubmed: 22406746
Int J Cardiol. 2014 Jan 15;171(1):56-61
pubmed: 24332599
J Vasc Surg. 2005 Jan;41(1):108-14
pubmed: 15696052
J Surg Res. 2013 Oct;184(2):907-24
pubmed: 23856125
Bioinformatics. 2012 Jan 1;28(1):105-11
pubmed: 22080467
Kidney Int Suppl (2011). 2014 Nov;4(1):97-101
pubmed: 26312158
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3819-23
pubmed: 10097121
Science. 2006 Apr 7;312(5770):117-21
pubmed: 16601194
Circ Res. 2019 Feb 15;124(4):588-606
pubmed: 30763214
Cell Mol Life Sci. 2009 Jun;66(11-12):1850-7
pubmed: 19387549
JCI Insight. 2019 Jun 6;4(11):
pubmed: 31167969
Annu Rev Med. 2017 Jan 14;68:51-67
pubmed: 28099082
BMC Bioinformatics. 2013 Apr 15;14:128
pubmed: 23586463
JCI Insight. 2020 Sep 3;5(17):
pubmed: 32701510
J Am Heart Assoc. 2017 Jan 24;6(1):
pubmed: 28119285
J Am Soc Nephrol. 2017 Jul;28(7):2133-2143
pubmed: 28220029
Curr Top Dev Biol. 2017;123:73-103
pubmed: 28236976
Physiol Rev. 2009 Jul;89(3):957-89
pubmed: 19584318
J Biol Chem. 2019 Sep 13;294(37):13545-13559
pubmed: 31341017
Matrix Biol. 2018 Oct;71-72:82-89
pubmed: 28782645
PLoS One. 2014 Aug 13;9(8):e103207
pubmed: 25119138
Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):911-7
pubmed: 25614286
Arterioscler Thromb Vasc Biol. 2019 Feb;39(2):126-136
pubmed: 30651002
Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7
pubmed: 27141961
J Biol Chem. 2009 Feb 27;284(9):5630-6
pubmed: 19109253
Nat Neurosci. 2007 Jan;10(1):77-86
pubmed: 17159989
Elife. 2017 Jan 30;6:
pubmed: 28134617
J R Soc Interface. 2017 May;14(130):
pubmed: 28490606
J Biol Chem. 1998 Oct 2;273(40):25875-9
pubmed: 9748262