Resistance, resilience, and functional redundancy of freshwater bacterioplankton communities facing a gradient of agricultural stressors in a mesocosm experiment.

DNA barcoding agrochemicals community ecology glyphosate imidacloprid microbial biology

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
10 2021
Historique:
revised: 30 06 2021
received: 30 04 2020
accepted: 23 07 2021
pubmed: 30 7 2021
medline: 21 10 2021
entrez: 29 7 2021
Statut: ppublish

Résumé

Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 μg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.

Identifiants

pubmed: 34324752
doi: 10.1111/mec.16100
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4771-4788

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Alexander, A. C., Luiker, E., Finley, M., & Culp, J. M. (2016). Mesocosm and field toxicity testing in the marine context. In Marine ecotoxicology (pp. 239-256). Elsevier Inc. https://doi.org/10.1016/b978-0-12-803371-5.00008-4
Alexander, A. C., Luis, A. T., Culp, J. M., Baird, D. J., & Cessna, A. J. (2013). Can nutrients mask community responses to insecticide mixtures? Ecotoxicology, 22(7), 1085-1100. https://doi.org/10.1007/s10646-013-1096-3
Allison, S. D., & Martiny, J. B. H. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 105, 11512-11519. https://doi.org/10.1073/pnas.0801925105
Altenburger, R., Backhaus, T., Boedeker, W., Faust, M., & Scholze, M. (2013). Simplifying complexity: Mixture toxicity assessment in the last 20 years. Environmental Toxicology and Chemistry, 32(8), 1685-1687. https://doi.org/10.1002/etc.2294
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62(1), 245-253. https://doi.org/10.1111/j.1541-0420.2005.00440.x
Auber, A., Travers-Trolet, M., Villanueva, M.-C., & Ernande, B. (2017). A new application of principal response curves for summarizing abrupt and cyclic shifts of communities over space. Ecosphere, 8(12), e02023. https://doi.org/10.1002/ecs2.2023
Baker, L. F., Mudge, J. F., Thompson, D. G., Houlahan, J. E., & Kidd, K. A. (2016). The combined influence of two agricultural contaminants on natural communities of phytoplankton and zooplankton. Ecotoxicology, 25(5), 1021-1032. https://doi.org/10.1007/s10646-016-1659-1
Beauséjour, R., Handa, I. T., Lechowicz, M. J., Gilbert, B., & Vellend, M. (2015). Historical anthropogenic disturbances influence patterns of non-native earthworm and plant invasions in a temperate primary forest. Biological Invasions, 17(4), 1267-1281. https://doi.org/10.1007/s10530-014-0794-y
Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 1-15. https://doi.org/10.1186/s12302-016-0070-0
Berggren, M., Lapierre, J. F., & del Giorgio, P. A. (2012). Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. The ISME Journal, 6(5), 984-993. https://doi.org/10.1038/ismej.2011.157
Berman, M. C., Llames, M. E., Minotti, P., Fermani, P., Quiroga, M. V., Ferraro, M. A., Metz, S., & Zagarese, H. E. (2020). Field evidence supports former experimental claims on the stimulatory effect of glyphosate on picocyanobacteria communities. Science of the Total Environment, 701, 134601. https://doi.org/10.1016/j.scitotenv.2019.134601
Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E., Argillier, C., Auer, S., Baattrup-Pedersen, A., Banin, L., Beklioğlu, M., Bondar-Kunze, E., Borja, A., Branco, P., Bucak, T., Buijse, A. D., Cardoso, A. C., Couture, R.-M., Cremona, F., de Zwart, D., … Hering, D. (2020). Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology & Evolution, 4(8), 1060-1068. https://doi.org/10.1038/s41559-020-1216-4
Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N., & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater-a UK perspective. Science of the Total Environment, 369(1-3), 163-177. https://doi.org/10.1016/j.scitotenv.2006.05.019
Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639-2643. https://doi.org/10.1038/ismej.2017.119
Callahan, B., McMurdie, P., Rosen, M., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J., & Holmes, S. P. (2016). Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Research, 5(2), 1-49. https://doi.org/10.12688/f1000research.8986.2
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Application, 8(January 1998), 559-568.
Carpenter, S. R., Stanley, E. H., & Vander Zanden, M. J. (2011). State of the world’s freshwater ecosystems: Physical, chemical, and biological changes. Annual Review of Environment and Resources, 36, 75-99. https://doi.org/10.1146/annurev-environ-021810-094524
Caruso, V., Song, X., Asquith, M., & Karstens, L. (2019). Performance of microbiome sequence inference methods in environments with varying biomass. mSystems, 4(1), 1-19. https://doi.org/10.1128/msystems.00163-18
CCME. (2007). Canadian Water Quality Guidelines for Protection of Aquatic Life: Imidacloprid. Scientific Supporting Document. Winnipeg, Manitoba.
CCME (2012). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Glyphosate. Scientific Supporting Document. Winnipeg, Manitoba.
Cedergreen, N., & Rasmussen, J. J. (2017). Low dose effects of pesticides in the aquatic environment. In ACS symposium series (Vol. 1249, pp. 167-187). https://doi.org/10.1021/bk-2017-1249.ch012
Chará-Serna, A. M., Epele, L. B., Morrissey, C. A., & Richardson, J. S. (2019). Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Science of the Total Environment, 692, 1291-1303. https://doi.org/10.1016/j.scitotenv.2019.06.301
DeLorenzo, M. E., Scott, G. I., & Ross, P. E. (2001). Toxicity of pesticides to aquatic microorganisms: A review. Environmental Toxicology and Chemistry, 20(1), 84-98. https://doi.org/10.1002/etc.5620200108
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069-5072. https://doi.org/10.1128/AEM.03006-05
EFSA. (2014). Conclusion on the peer review of the pesticide risk assessment for aquatic organisms for the active substance imidacloprid. EFSA Journal, 12, 1-49. https://doi.org/10.2903/j.efsa.2013.3066
EFSA. (2016). Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA Journal, 13. https://doi.org/10.2903/j.efsa.2015.4302
EPA. (2019). Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. Retrieved from https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk#ref_4
Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034-1039. https://doi.org/10.1126/science.1153213
Fernandes, G., Aparicio, V. C., Bastos, M. C., De Gerónimo, E., Labanowski, J., Prestes, O. D., Zanella, R., & dos Santos, D. R. (2019). Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Science of the Total Environment, 651, 1377-1387. https://doi.org/10.1016/j.scitotenv.2018.09.292
Flood, S. L., & Burkholder, J. A. M. (2018). Imbalanced nutrient regimes increase Prymnesium parvum resilience to herbicide exposure. Harmful Algae, 75, 57-74. https://doi.org/10.1016/j.hal.2018.04.006
Fugère, V., Hébert, M.-P., da Costa, N. B., Xu, C. C. Y., Barrett, R. D. H., Beisner, B. E., Bell, G., Fussmann, G. F., Shapiro, B. J., Yargeau, V., & Gonzalez, A. (2020). Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology & Evolution, 4, 578-588. https://doi.org/10.1038/s41559-020-1134-5
Funke, T., Han, H., Healy-Fried, M. L., Fischer, M., & Schönbrunn, E. (2006). Molecular basis for the herbicide resistance of roundup ready crops. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13010-13015. https://doi.org/10.1073/pnas.0603638103
Garland, J. L., Mills, A. L., & Young, J. S. (2001). Relative effectiveness of kinetic analysis vs single point readings for classifying environmental samples based on community-level physiological profiles (CLPP). Soil Biology and Biochemistry, 33(7-8), 1059-1066. https://doi.org/10.1016/S0038-0717(01)00011-6
Gasol, J. M., & Del Giorgio, P. A. (2000). Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina, 64(2), 197-224. https://doi.org/10.3989/scimar.2000.64n2197
Geyer, R. L., Smith, G. R., & Rettig, J. E. (2016). Effects of roundup formulations, nutrient addition, and Western mosquitofish (Gambusia affinis) on aquatic communities. Environmental Science and Pollution Research, 23(12), 11729-11739. https://doi.org/10.1007/s11356-016-6381-2
Girvan, M., Campbell, C., Killham, K., Prosser, J., & Glover, L. (2005). Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology, 7(3), 301-313. https://doi.org/10.1111/j.1462-2920.2004.00695.x
Healy-Fried, M. L., Funke, T., Priestman, M. A., Han, H., & Scho, E. (2007). Structural basis of glyphosate tolerance resulting from mutations of Pro 101 in Escherichia coli. The Journal of Biological Chemistry, 282(45), 32949-32955. https://doi.org/10.1074/jbc.M705624200
Hébert, M.-P., Fugère, V., Beisner, B. E., Barbosa da Costa, N., Barrett, R. D. H., Bell, G., Shapiro, B. J., Yargeau, V., Gonzalez, A., & Fussmann, G. F. (2021). Widespread agrochemicals differentially affect zooplankton biomass and community structure. Ecological Applications, 1-54. https://doi.org/10.1002/eap.2423
Hébert, M.-P., Fugère, V., & Gonzalez, A. (2018). The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Frontiers in Ecology and the Environment, 3, 1-9. https://doi.org/10.1002/fee.1985
Hénault-Ethier, L., Lucotte, M., Moingt, M., Paquet, S., Maccario, S., Smedbol, É., Gomes, M. P., Lepage, L., Juneau, P., & Labrecque, M. (2017). Herbaceous or Salix miyabeana ‘SX64’ narrow buffer strips as a means to minimize glyphosate and aminomethylphosphonic acid leaching from row crop fields. Science of the Total Environment, 598, 1177-1186. https://doi.org/10.1016/j.scitotenv.2017.04.104
Hove-Jensen, B., Zechel, D. L., & Jochimsen, B. (2014). Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiology and Molecular Biology Reviews, 78(1), 176-197. https://doi.org/10.1128/MMBR.00040-13
Janßen, R., Skeff, W., Werner, J., Wirth, M. A., Kreikemeyer, B., Schulz-Bull, D., & Labrenz, M. (2019). A glyphosate pulse to brackish long-term microcosms has a greater impact on the microbial diversity and abundance of planktonic than of biofilm assemblages. Frontiers in Marine Science, 6(December), 1-17. https://doi.org/10.3389/fmars.2019.00758
Jeppesen, E., Kronvang, B., Meerhoff, M., Søndergaard, M., Hansen, K. M., Andersen, H. E., Lauridsen, T. L., Liboriussen, L., Beklioglu, M., Özen, A., & Olesen, J. E. (2009). Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environment Quality, 38(5), 1930. https://doi.org/10.2134/jeq2008.0113
Jeschke, P., & Nauen, R. (2008). Neonicotinoids - from zero to hero in insecticide chemistry. Pest Management Science, 64, 1100-1106. https://doi.org/10.1002/ps.1631
Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375
Keatley, B. E., Bennett, E. M., Macdonald, G. K., Taranu, Z. E., & Gregory-Eaves, I. (2011). Land-use legacies are important determinants of lake eutrophication in the Anthropocene. PLoS One, 6(1), e15913. https://doi.org/10.1371/journal.pone.0015913
Khadra, M., Planas, D., Girard, C., & Amyot, M. (2018). Age matters: Submersion period shapes community composition of lake biofilms under glyphosate stress. Facets, 3(1), 934-951. https://doi.org/10.1139/facets-2018-0019
Konopka, A. (2009). What is microbial community ecology? The ISME Journal, 3(11), 1223-1230. https://doi.org/10.1038/ismej.2009.88
Kraemer, S. A., Barbosa da Costa, N., Shapiro, B. J., Fradette, M., Huot, Y., & Walsh, D. A. (2020). A large-scale assessment of lakes reveals a pervasive signal of land use on bacterial communities. The ISME Journal, 14(12), 3011-3023. https://doi.org/10.1038/s41396-020-0733-0
Langenheder, S., Lindström, E. S., & Tranvik, L. J. (2006). Structure and function of bacterial communities emerging from different sources under identical conditions. Applied and Environmental Microbiology, 72(1), 212-220. https://doi.org/10.1128/AEM.72.1.212-220.2006
Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271-280. https://doi.org/10.1007/s004420100716
Liu, C. M., McLean, P. A., Sookdeo, C. C., & Cannon, F. C. (1991). Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Applied and Environmental Microbiology, 57(6), 1799-1804.
Louca, S., Polz, M. F., Mazel, F., Albright, M. B. N., Huber, J. A., O’Connor, M. I., Ackermann, M., Hahn, A. S., Srivastava, D. S., Crowe, S. A., Doebeli, M., & Parfrey, L. W. (2018). Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2, 936-943. https://doi.org/10.1038/s41559-018-0519-1
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(550), 1-21. https://doi.org/10.1186/s13059-014-0550-8
Lozano, R. B., & Pratt, J. R. (1994). Interaction of toxicants and communities: The role of nutrients. Environmental Toxicology and Chemistry, 13(3), 361-368. https://doi.org/10.1002/etc.5620130302
Lozupone, C., & Knight, R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), 8228-8235. https://doi.org/10.1128/AEM.71.12.8228
Lu, T., Xu, N., Zhang, Q. I., Zhang, Z., Debognies, A., Zhou, Z., Sun, L., & Qian, H. (2020). Understanding the influence of glyphosate on the structure and function of freshwater microbial community in a microcosm. Environmental Pollution, 260(114012), 1-9. https://doi.org/10.1016/j.envpol.2020.114012
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17, 10-12. https://doi.org/10.14806/ej.17.1.200
Martiny, J. B. H., Jones, S. E., Lennon, J. T., & Martiny, A. C. (2015). Microbiomes in light of traits: A phylogenetic perspective. Science, 350(6261), aac9323. https://doi.org/10.1126/science.aac9323
McComb, A. J. (2002). Limnological analyses. Lakes and Reservoirs: Research and Management, 7(2), 135. https://doi.org/10.1046/j.1440-1770.2002.01722.x
McKnight, D. T., Huerlimann, R., Bower, D. S., Schwarzkopf, L., Alford, R. A., & Zenger, K. R. (2019). Methods for normalizing microbiome data: An ecological perspective. Methods in Ecology and Evolution, 10(3), 389-400. https://doi.org/10.1111/2041-210X.13115
McMurdie, P. J., & Holmes, S. (2013). phyloseq : An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
McMurdie, P. J., & Holmes, S. (2014). Waste not, want not: Why rarefying microbiome data is inadmissible. PLOS Computational Biology, 10(4), e1003531. https://doi.org/10.1371/journal.pcbi.1003531
Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74, 291-303. https://doi.org/10.1016/j.envint.2014.10.024
Muturi, E. J., Donthu, R. K., Fields, C. J., Moise, I. K., & Kim, C. (2017). Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/srep44565
Newman, M. M., Hoilett, N., Lorenz, N., Dick, R. P., Liles, M. R., Ramsier, C., & Kloepper, J. W. (2016). Glyphosate effects on soil rhizosphere-associated bacterial communities. Science of the Total Environment, 543, 155-160. https://doi.org/10.1016/j.scitotenv.2015.11.008
Newton, R. J., Jones, S. E., Eiler, A., Mcmahon, K. D., & Bertilsson, S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews, 75(1), 14-49. https://doi.org/10.1128/MMBR.00028-10
Oksanen, A. J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Hara, R. B. O., Wagner, H. (2018). Vegan: Community ecology package. R package version 2.4-6. ISBN 0-387-95457-0
Paerl, H. W., Otten, T. G., & Kudela, R. (2018). Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environmental Science and Technology, 52(10), 5519-5529. https://doi.org/10.1021/acs.est.7b05950
Patton, C. J., & Kryskalla, J. R. (2003). Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory-Evaluation of Alkaline Persulfate Digestion as an Alternative to Kjeldahl Digestion for Determination of Total and Dissolved Nitrogen and Phosphorus in Water. USGS.
Peter, H., Beier, S., Bertilsson, S., Lindström, E. S., Langenheder, S., & Tranvik, L. J. (2011). Function-specific response to depletion of microbial diversity. The ISME Journal, 5(2), 351-361. https://doi.org/10.1038/ismej.2010.119
Piggott, J. J., Niyogi, D. K., Townsend, C. R., & Matthaei, C. D. (2015). Multiple stressors and stream ecosystem functioning: Climate warming and agricultural stressors interact to affect processing of organic matter. Journal of Applied Ecology, 52(5), 1126-1134. https://doi.org/10.1111/1365-2664.12480
Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate resistance: Different approaches through protein engineering. The FEBS Journal, 278(16), 2753-2766. https://doi.org/10.1111/j.1742-4658.2011.08214.x
Preheim, S. P., Perrotta, A. R., Martin-platero, A. M., Gupta, A., & Alm, E. J. (2013). Distribution-based clustering: using ecology to refine the operational taxonomic unit. Applied and Environmental Microbiology, 79(21), 6593-6603. https://doi.org/10.1128/AEM.00342-13
R Core Team. (2008). R: A Language and environment for statistical computing. In R foundation for statistical computing (Vol. 1, pp. 1-2630). R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7
Rainio, M. J., Ruuskanen, S., Helander, M., Saikkonen, K., Saloniemi, I., & Puigbò, P. (2021). Adaptation of bacteria to glyphosate: A microevolutionary perspective of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Environmental Microbiology Reports, 13(3), 309-316. https://doi.org/10.1111/1758-2229.12931
Relyea, R. A. (2009). A cocktail of contaminants: How mixtures of pesticides at low concentrations affect aquatic communities. Oecologia, 159(2), 363-376. https://doi.org/10.1007/s00442-008-1213-9
Roberts, T., & Hutson, D. (1999). Metabolic pathways of agrochemicals. Part 2: Insecticides and fungicides (T. R. Roberts, D. H. Hutson, P. W. Lee, P. H. Nicholls, & J. R. Plimmer, Eds.), The Royal Society of Chemistry. The Royal Society of Chemistry. https://doi.org/10.1017/CBO9781107415324.004
Rohwer, R. R., Hamilton, J. J., Newton, R. J., & McMahon, K. D. (2018). TaxAss: Leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere, 3(5), 1-14. https://doi.org/10.1128/msphere.00327-18
Romero, F., Acuña, V., & Sabater, S. (2020). Multiple stressors determine community structure and estimated function of river biofilm bacteria. Applied and Environmental Microbiology, 86(12), 1-13. https://doi.org/10.1128/AEM.00291-20
Ruiz-González, C., Archambault, E., Laforest-Lapointe, I., del Giorgio, P. A., Kembel, S. W., Messier, C., Nock, C. A., & Beisner, B. E. (2018). Soils associated to different tree communities do not elicit predictable responses in lake bacterial community structure and function. FEMS Microbiology Ecology, 94(8), 1-15. https://doi.org/10.1093/femsec/fiy115
Ruiz-González, C., Niño-García, J. P., Lapierre, J.-F., & del Giorgio, P. A. (2015). The quality of organic matter shapes the functional biogeography of bacterioplankton across boreal freshwater ecosystems. Global Ecology and Biogeography, 24, 1487-1498. https://doi.org/10.1111/geb.12356
Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H., Huber, D. H., Langenheder, S., Lennon, J. T., Martiny, J. B. H., Matulich, K. L., Schmidt, T. M., & Handelsman, J. O. (2012). Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology, 3(Dec), 1-19. https://doi.org/10.3389/fmicb.2012.00417
Simon-Delso, N., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D. W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C. H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E. A. D., Morrissey, C. A., … Wiemers, M. (2015). Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22(1), 5-34. https://doi.org/10.1007/s11356-014-3470-y
Simpson, M. G. L. (2019). permute: Functions for Generating Restricted Permutations of Data. R package version 0.9-5. Retrieved from https://cran.r-project.org/package=permute
Smedbol, É., Lucotte, M., Labrecque, M., Lepage, L., & Juneau, P. (2017). Phytoplankton growth and PSII efficiency sensitivity to a glyphosate-based herbicide (Factor 540®). Aquatic Toxicology, 192(September), 265-273. https://doi.org/10.1016/j.aquatox.2017.09.021
Smith, V. H., Joye, S. B., & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51(1), 351-355. https://doi.org/10.4319/lo.2006.51.1_part_2.0351
Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: Where do we go from here? Trends in Ecology and Evolution, 24(4), 201-207. https://doi.org/10.1016/j.tree.2008.11.009
Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639-643. https://doi.org/10.1038/s41586-018-0411-9
Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., … Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728), 519-525. https://doi.org/10.1038/s41586-018-0594-0
Stachowski-Haberkorn, S., Becker, B., Marie, D., Haberkorn, H., Coroller, L., & de la Broise, D. (2008). Impact of roundup on the marine microbial community, as shown by an in situ microcosm experiment. Aquatic Toxicology, 89(4), 232-241. https://doi.org/10.1016/j.aquatox.2008.07.004
Starr, A. V., Bargu, S., Maiti, K., & DeLaune, R. D. (2017). The effect of atrazine on Louisiana Gulf Coast Estuarine phytoplankton. Archives of Environmental Contamination and Toxicology, 72(2), 178-188. https://doi.org/10.1007/s00244-016-0335-z
Stehle, S., & Schulz, R. (2015). Agricultural insecticides threaten surface waters at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5750-5755. https://doi.org/10.1073/pnas.1500232112
Thibodeau, G., Walsh, D. A., & Beisner, B. E. (2015). Rapid eco-evolutionary responses in perturbed phytoplankton communities. Proceedings of the Royal Society B, 282, 20151215. https://doi.org/10.1098/rspb.2015.1215
Thompson, M. S. A., Bankier, C., Bell, T., Dumbrell, A. J., Gray, C., Ledger, M. E., & Woodward, G. (2016). Gene-to-ecosystem impacts of a catastrophic pesticide spill: Testing a multilevel bioassessment approach in a river ecosystem. Freshwater Biology, 61(12), 2037-2050. https://doi.org/10.1111/fwb.12676
Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292(5515), 281-284. https://doi.org/10.1126/science.1057544
Tromas, N., Fortin, N., Bedrani, L., Terrat, Y., Cardoso, P., Bird, D., Greer, C. W., & Shapiro, B. J. (2017). Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. The ISME Journal, 11(8), 1746-1763. https://doi.org/10.1038/ismej.2017.58
van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finchk, M. R., & Morris, J. J. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 617, 255-268. https://doi.org/10.1016/j.scitotenv.2017.10.309
Van den Brink, P. J., den Besten, P. J., bij de Vaate, A., & ter Braak, C. J. F. (2009). Principal response curves technique for the analysis of multivariate biomonitoring time series. Environmental Monitoring and Assessment, 152, 271-281. https://doi.org/10.1007/s10661-008-0314-6
Van Rij, J., Wieling, M., Baayen, H. R., & van Rijn, H. (2020). Interpreting Time Series and Autocorrelated Data Using GAMMs Author.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555-561. https://doi.org/10.1038/nature09440
Wang, C., Lin, X., Li, L., Lin, L., & Lin, S. (2017). Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source. Frontiers in Microbiology, 8(2530), 1-13. https://doi.org/10.3389/fmicb.2017.02530
Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J. R., Vázquez-Baeza, Y., Birmingham, A., Hyde, E. R., & Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1), 27. https://doi.org/10.1186/s40168-017-0237-y
Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses (3rd ed., Vol. 7). Springer Science & Business Media. https://doi.org/10.1046/j.1440-1770.2002.01722.x
Wood, S. (2017). Generalized additive models (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279
Wright, E. S. (2016). Using DECIPHER v2.0 to analyze big biological sequence data in R. The R Journal, 8(1), 352-359. https://doi.org/10.32614/RJ-2016-025
Yamamuro, M., Komuro, T., Kamiya, H., Kato, T., Hasegawa, H., & Kameda, Y. (2019). Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science, 366(6465), 620-623. https://doi.org/10.1126/science.aax3442
Zhang, Z., Qu, Y., Li, S., Feng, K., Wang, S., Cai, W., Liang, Y., Li, H., Xu, M., Yin, H., & Deng, Y. E. (2017). Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-05260-w

Auteurs

Naíla Barbosa da Costa (N)

Département des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada.
Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.

Vincent Fugère (V)

Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.
Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.
Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada.
Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.

Marie-Pier Hébert (MP)

Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.
Department of Biology, McGill University, Montreal, QC, Canada.

Charles C Y Xu (CCY)

Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.
Department of Biology, McGill University, Montreal, QC, Canada.
Redpath Museum, McGill University, Montreal, QC, Canada.

Rowan D H Barrett (RDH)

Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.
Department of Biology, McGill University, Montreal, QC, Canada.
Redpath Museum, McGill University, Montreal, QC, Canada.

Beatrix E Beisner (BE)

Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.
Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada.

Graham Bell (G)

Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.
Department of Biology, McGill University, Montreal, QC, Canada.

Viviane Yargeau (V)

Department of Chemical Engineering, McGill University, Montreal, QC, Canada.

Gregor F Fussmann (GF)

Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.
Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.
Department of Biology, McGill University, Montreal, QC, Canada.

Andrew Gonzalez (A)

Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.
Department of Biology, McGill University, Montreal, QC, Canada.

B Jesse Shapiro (BJ)

Département des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada.
Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.
Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.
Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
McGill Genome Centre, McGill University, Montreal, QC, Canada.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH