Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae.


Journal

Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677

Informations de publication

Date de publication:
09 2021
Historique:
received: 21 12 2020
accepted: 07 07 2021
pubmed: 31 7 2021
medline: 12 10 2021
entrez: 30 7 2021
Statut: ppublish

Résumé

Plant pattern recognition receptors (PRRs) facilitate recognition of microbial patterns and mediate activation of plant immunity. Arabidopsis thaliana RLP42 senses fungal endopolygalacturonases (PGs) and triggers plant defence through complex formation with SOBIR1 and SERK co-receptors. Here, we show that a conserved 9-amino-acid fragment pg9(At) within PGs is sufficient to activate RLP42-dependent plant immunity. Structure-function analysis reveals essential roles of amino acid residues within the RLP42 leucine-rich repeat and island domains for ligand binding and PRR complex assembly. Sensitivity to pg9(At), which is restricted to A. thaliana and exhibits scattered accession specificity, is unusual for known PRRs. Arabidopsis arenosa and Brassica rapa, two Brassicaceae species closely related to A. thaliana, respectively perceive immunogenic PG fragments pg20(Aa) and pg36(Bra), which are structurally distinct from pg9(At). Our study provides evidence for rapid evolution of polymorphic PG sensors with distinct pattern specificities within a single plant family.

Identifiants

pubmed: 34326531
doi: 10.1038/s41477-021-00982-2
pii: 10.1038/s41477-021-00982-2
doi:

Substances chimiques

Polygalacturonase EC 3.2.1.15

Types de publication

Comparative Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1254-1263

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Albert, I., Hua, C., Nürnberger, T., Pruitt, R. N. & Zhang, L. Surface sensor systems in plant immunity. Plant Physiol. 182, 1582–1596 (2020).
doi: 10.1104/pp.19.01299
Saijo, Y., Loo, E. P. & Yasuda, S. Pattern recognition receptors and signalling in plant–microbe interactions. Plant J. 93, 592–613 (2018).
doi: 10.1111/tpj.13808
Wan, W. L., Fröhlich, K., Pruitt, R. N., Nürnberger, T. & Zhang, L. Plant cell surface immune receptor complex signalling. Curr. Opin. Plant Biol. 50, 18–28 (2019).
doi: 10.1016/j.pbi.2019.02.001
Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).
doi: 10.1038/nature05286
Tsuda, K. & Katagiri, F. Comparing signalling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13, 459–465 (2010).
doi: 10.1016/j.pbi.2010.04.006
Pruitt, N. R. et al. The EDS1-PAD4-ADR1 node mediates pattern-triggered immunity. Nature (in the press).
Sun, Y. et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624–628 (2013).
doi: 10.1126/science.1243825
Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. & Felix, G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465–476 (2006).
doi: 10.1105/tpc.105.036574
Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406 (2009).
doi: 10.1146/annurev.arplant.57.032905.105346
Hind, S. R. et al. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2, 16128 (2016).
doi: 10.1038/nplants.2016.128
Katsuragi, Y. et al. CD2-1, the C-terminal region of flagellin, modulates the induction of immune responses in rice. Mol. Plant Microbe Interact. 28, 648–658 (2015).
doi: 10.1094/MPMI-11-14-0372-R
Fürst, U. et al. Perception of Agrobacterium tumefaciens flagellin by FLS2
doi: 10.1038/s41477-019-0578-6
Furukawa, T., Inagaki, H., Takai, R., Hirai, H. & Che, F. S. Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant Microbe Interact. 27, 113–124 (2014).
doi: 10.1094/MPMI-10-13-0304-R
Zhang, L. et al. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164, 352–364 (2014).
doi: 10.1104/pp.113.230698
van Santen, Y. et al. 1.68-Å Crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J. Biol. Chem. 274, 30474–30480 (1999).
doi: 10.1074/jbc.274.43.30474
Bauer, Z., Gomez-Gomez, L., Boller, T. & Felix, G. Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J. Biol. Chem. 276, 45669–45676 (2001).
doi: 10.1074/jbc.M102390200
Kunze, G. et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496–3507 (2004).
doi: 10.1105/tpc.104.026765
Meindl, T., Boller, T. & Felix, G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12, 1783–1794 (2000).
pubmed: 11006347 pmcid: 149085
Albert, I. et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1, 15140 (2015).
doi: 10.1038/nplants.2015.140
Jehle, A. K. et al. The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 25, 2330–2340 (2013).
doi: 10.1105/tpc.113.110833
Fröhlich, K. Functional Characterization of the Immune Receptor RLP32 and its Ligand IF1 (Tübingen Univ. Press, 2020).
Zhang, W. et al. Arabidopsis receptor-like protein 30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25, 4227–4241 (2013).
doi: 10.1105/tpc.113.117010
Fan, L. Identification of a Novel Receptor of Bacterial PAMP RsE in Arabidopsis Using Genomic Tools (Tübingen Univ. Press, 2016).
Albert, M. et al. Regulation of cell behaviour by plant receptor kinases: pattern recognition receptors as prototypical models. Eur. J. Cell Biol. 89, 200–207 (2010).
doi: 10.1016/j.ejcb.2009.11.015
Böhm, H. et al. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog. 10, e1004491 (2014).
doi: 10.1371/journal.ppat.1004491
Federici, L. et al. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc. Natl Acad. Sci. USA 98, 13425–13430 (2001).
doi: 10.1073/pnas.231473698
van Pouderoyen, G., Snijder, H. J., Benen, J. A. & Dijkstra, B. W. Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Lett. 554, 462–466 (2003).
doi: 10.1016/S0014-5793(03)01221-3
Bonivento, D. et al. Crystal structure of the endopolygalacturonase from the phytopathogenic fungus Colletotrichum lupini and its interaction with polygalacturonase-inhibiting proteins. Proteins 70, 294–299 (2008).
doi: 10.1002/prot.21610
Albert, I., Zhang, L., Bemm, H. & Nürnberger, T. Structure–function analysis of immune receptor AtRLP23 with its ligand nlp20 and co-receptors AtSOBIR1 and AtBAK1. Mol. Plant Microbe Interact. 32, 1038–1046 (2019).
doi: 10.1094/MPMI-09-18-0263-R
Wang, J. et al. Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature 525, 265–268 (2015).
doi: 10.1038/nature14858
Barragan, A. C. et al. Homozygosity at its limit: inbreeding depression in wild Arabidopsis arenosa populations. Preprint at bioRxiv https://doi.org/10.1101/2021.01.24.427284 (2021).
Mueller, K. et al. Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell 24, 2213–2224 (2012).
doi: 10.1105/tpc.112.096073
Lukens, L. N. et al. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol. 140, 336–348 (2006).
doi: 10.1104/pp.105.066308
Wan, W. L. et al. Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signalling reveals BIK1-dependent differences. New Phytol. 221, 2080–2095 (2019).
doi: 10.1111/nph.15497
Zhang, L. et al. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytol. 215, 368–381 (2017).
doi: 10.1111/nph.14537

Auteurs

Lisha Zhang (L)

Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany. lisha.zhang@zmbp.uni-tuebingen.de.

Chenlei Hua (C)

Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.

Rory N Pruitt (RN)

Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.

Si Qin (S)

Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.

Lei Wang (L)

Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.

Isabell Albert (I)

Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
Institute of Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.

Markus Albert (M)

Institute of Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.

Jan A L van Kan (JAL)

Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.

Thorsten Nürnberger (T)

Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany. nuernberger@uni-tuebingen.de.
Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa. nuernberger@uni-tuebingen.de.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages

Classifications MeSH