Single-Cell RNA Sequencing of Ovarian Cancer: Promises and Challenges.
Gene expression
Next generation RNA sequencing
Ovarian cancer
Rare cancer stem cells
Rare cancer subpopulations
Single cell isolation
Single cell sequencing
Treatment
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
5
8
2021
Statut:
ppublish
Résumé
Ovarian cancer remains the leading cause of death from gynecologic malignancy in the Western world. Tumors are comprised of heterogeneous populations of various cancer, immune, and stromal cells; it is hypothesized that rare cancer stem cells within these subpopulations lead to disease recurrence and treatment resistance. Technological advances now allow for the analysis of tumor genomes and transcriptomes at the single-cell level, which provides the resolution to potentially identify these rare cancer stem cells within the larger tumor.In this chapter, we review the evolution of next-generation RNA sequencing techniques, the methodology of single-cell isolation and sequencing, sequencing data analysis, and the potential applications in ovarian cancer. We also summarize the current published work using single-cell sequencing in ovarian cancer.By utilizing this novel technique to characterize the gene expression of rare subpopulations, new targets and treatment pathways may be identified in ovarian cancer to change treatment paradigms.
Identifiants
pubmed: 34339033
doi: 10.1007/978-3-030-73359-9_7
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
113-123Informations de copyright
© 2021. Springer Nature Switzerland AG.
Références
Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7–30.
Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J., & Cronin, K. A. (Eds.). SEER cancer statistics review, 1975–2014. Bethesda, MD: National Cancer Institute. Retrieved from https://seer.cancer.gov/csr/1975_2014/ , based on November 2016 SEER data submission, posted to the SEER web site, April 2017.
Ng, J. S., Low, J. J., & Ilancheran, A. (2012). Epithelial ovarian cancer. Best Practice & Research Clinical Obstetrics & Gynaecology, 26, 337–345.
doi: 10.1016/j.bpobgyn.2011.12.005
Garraway, L. A., Verweij, J., & Ballman, K. V. (2013). Precision oncology: An overview. Journal of Clinical Oncology, 31(15), 1803–1805.
pubmed: 23589545
doi: 10.1200/JCO.2013.49.4799
Werner, H. M., Mills, G. B., & Ram, P. T. (2014). Cancer systems biology: A peek into the future of patient care? Nature Reviews. Clinical Oncology, 11(3), 167–176.
pubmed: 24492837
pmcid: 4321721
doi: 10.1038/nrclinonc.2014.6
Rubin, E. H., et al. (2014). Developing precision medicine in a global world. Clinical Cancer Research, 20(6), 1419–1427.
pubmed: 24634465
pmcid: 7385990
doi: 10.1158/1078-0432.CCR-14-0091
Schwaederle, M., et al. (2015). Impact of precision medicine in diverse cancers: A meta-analysis of phase II clinical trials. Journal of Clinical Oncology, 33(32), 3817–3825.
pubmed: 26304871
pmcid: 4737863
doi: 10.1200/JCO.2015.61.5997
Cancer Genome Atlas Research Network. (2011). Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615.
doi: 10.1038/nature10166
Patch, A. M., Christie, E. L., Etemadmoghadam, D., Garsed, D. W., George, J., Fereday, S., Nones, K., Cowin, P., Alsop, K., Bailey, P. J., et al. (2015). Whole-genome characterization of chemoresistant ovarian cancer. Nature, 521, 489–494.
pubmed: 26017449
doi: 10.1038/nature14410
Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T., Mesirov, J. P., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17, 98–110.
pubmed: 2818769
pmcid: 2818769
doi: 10.1016/j.ccr.2009.12.020
Verhaak, R., Tamayo, P., Yang, J. Y., Hubbard, D., Zhang, H., Creighton, C. J., Fereday, S., Lawrence, M., Carter, S. L., Mermel, C. H., et al. (2013). Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. Journal of Clinical Investigation, 123, 517–525.
Tothill, R. W., Tinker, A. V., George, J., et al. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical Cancer Research, 14, 5198–5208.
pubmed: 18698038
doi: 10.1158/1078-0432.CCR-08-0196
pmcid: 18698038
Lee, J. Y., Yoon, J. K., Kim, B., Kim, S., Kim, M. A., Lim, H., et al. (2015). Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing. BMC Cancer, 15, 85.
pubmed: 25881093
pmcid: 4346117
doi: 10.1186/s12885-015-1077-4
Donati, G. (2016). The niche in single-cell technologies. Immunology and Cell Biology, 94, 250–255.
pubmed: 26620629
doi: 10.1038/icb.2015.107
pmcid: 26620629
Van Dijk, E. L., Auger, H., Jaszczyszyn, Y., & Thermes, C. (2014). Ten years of next-generation sequencing technology. Trends in Genetics, 30, 418–426.
pubmed: 25108476
doi: 10.1016/j.tig.2014.07.001
pmcid: 25108476
Li, G. W., & Xie, X. S. (2011). Central dogma at the single-molecule level in living cells. Nature, 475, 308–315.
pubmed: 21776076
pmcid: 21776076
doi: 10.1038/nature10315
Raj, A., & van Oudenaarden, A. (2008). Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell, 135, 216–226.
pubmed: 18957198
pmcid: 3118044
doi: 10.1016/j.cell.2008.09.050
Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., & Eberwine, J. H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proceedings of the National Academy of Sciences of the United States of America, 87, 1663–1667.
pubmed: 1689846
pmcid: 53542
doi: 10.1073/pnas.87.5.1663
Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., et al. (2002). Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences of the United States of America, 99, 5261–5266.
pubmed: 11959976
pmcid: 122757
doi: 10.1073/pnas.082089499
Telenius, H., Carter, N. P., Bebb, C. E., Nordenskjold, M., Ponder, B. A., & Tunnacliffe, A. (1992). Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics, 13, 718–725.
pubmed: 1639399
doi: 10.1016/0888-7543(92)90147-K
pmcid: 1639399
Mardis, E. R. (2011). A decade’s perspective on DNA sequencing technology. Nature, 470, 198–203.
pubmed: 21307932
doi: 10.1038/nature09796
pmcid: 21307932
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B. B., Siddiqui, A., et al. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 6, 377–382.
pubmed: 19349980
doi: 10.1038/nmeth.1315
pmcid: 19349980
Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472, 90–94.
pubmed: 21399628
pmcid: 4504184
doi: 10.1038/nature09807
Lake, B. B., Codeluppi, S., Yung, Y. C., Gao, D., Chun, J., Kharchenko, P. V., et al. (2017). A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Scientific Reports, 7, 6031.
pubmed: 28729663
pmcid: 5519641
doi: 10.1038/s41598-017-04426-w
Gawad, C., Koh, W., & Quake, S. R. (2016). Single-cell genome sequencing: Current state of the science. Nature Reviews. Genetics, 17, 175–188.
pubmed: 26806412
doi: 10.1038/nrg.2015.16
pmcid: 26806412
Navin, N. E. (2014). Cancer genomics: One cell at a time. Genome Biology, 15(8), 452.
pubmed: 25222669
pmcid: 4281948
doi: 10.1186/s13059-014-0452-9
Gierahn, T. M., Wadsworth, M. H., et al. (2017). Seq-Well: Portable, low cost RNA sequencing of single cells at high throughput. Nature Methods, 14, 395–398.
pubmed: 28192419
pmcid: 5376227
doi: 10.1038/nmeth.4179
Vitak, S. A., Torkenczy, K. A., Rosenkrantz, J. L., et al. (2017). Sequencing thousands of single-cell genomes with combinatorial indexing. Nature Methods, 14, 302–308.
pubmed: 28135258
pmcid: 5908213
doi: 10.1038/nmeth.4154
Cao, J., Packer, J. S., Ramani, V., et al. (2017). Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 357(6352), 661–667.
pubmed: 28818938
pmcid: 5894354
doi: 10.1126/science.aam8940
Sheng, K., Cao, W., Niu, Y., Deng, Q., & Zong, C. (2017). Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nature Methods, 14, 267–270.
pubmed: 28092691
doi: 10.1038/nmeth.4145
Fan, X., Zhang, X., Wu, X., Guo, H., Hu, Y., Tang, F., et al. (2015). Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biology, 16, 148.
pubmed: 26201400
pmcid: 4511241
doi: 10.1186/s13059-015-0706-1
Kivioja, T., Vähärautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., et al. (2011). Counting absolute numbers of molecules using unique molecular identifiers. Nature Methods, 9, 72–74.
pubmed: 22101854
doi: 10.1038/nmeth.1778
pmcid: 22101854
Bacher, R., & Kendziorski, C. (2016). Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biology, 17, 63.
pubmed: 27052890
pmcid: 4823857
doi: 10.1186/s13059-016-0927-y
Wagner, A., Regev, A., & Yosef, N. (2016). Revealing the vectors of cellular identity with single-cell genomics. Nature Biotechnology, 34, 1145–1160.
pubmed: 27824854
pmcid: 5465644
doi: 10.1038/nbt.3711
Miragaia, R. J., Teichmann, S. A., & Hagai, T. (2017). Single-cell insights into transcriptomic diversity in immunity. Current Opinion in Systems Biology, 5, 63–71.
doi: 10.1016/j.coisb.2017.08.003
Poirion, O. B., Zhu, X., Ching, T., & Garmire, L. (2016). Single-cell transcriptomics bioinformatics and computational challenges. Frontiers in Genetics, 7, 163.
pubmed: 27708664
pmcid: 5030210
doi: 10.3389/fgene.2016.00163
Rostom, R., Svensson, V., Teichmann, S. A., & Kar, G. (2017). Computational approaches for interpreting scRNA-seq data. FEBS Letters, 591(15), 2213–2225.
pubmed: 28524227
pmcid: 5575496
doi: 10.1002/1873-3468.12684
Freytag, S., Tian, L., Lönnstedt, I., Ng, M., & Bahlo, M. (2018). Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data. F1000Res, 7, 1297.
pubmed: 30228881
pmcid: 6124389
doi: 10.12688/f1000research.15809.1
Ramskold, D., Luo, S., Wang, Y. C., Li, R., Deng, Q., Faridani, O. R., Daniels, G. A., Khrebtukova, I., Loring, J. F., Laurent, L. C., et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology, 30, 777–782.
pubmed: 22820318
pmcid: 3467340
doi: 10.1038/nbt.2282
Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., Yu, M., Pely, A., Engstrom, A., Zhu, H., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158, 1110–1122.
pubmed: 25171411
pmcid: 4149753
doi: 10.1016/j.cell.2014.07.013
Patel, A. P., Tirosh, I., Trombetta, J. J., et al. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344(6190), 1396–1401.
pubmed: 24925914
pmcid: 4123637
doi: 10.1126/science.1254257
Yachida, S., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117.
pubmed: 20981102
pmcid: 3148940
doi: 10.1038/nature09515
Eppert, K., et al. (2011). Stem cell gene expression programs influence clinical outcome in human leukemia. Nature Medicine, 17, 1086–1093.
pubmed: 21873988
doi: 10.1038/nm.2415
pmcid: 21873988
Parsons, D. W., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807–1812.
pubmed: 18772396
pmcid: 2820389
doi: 10.1126/science.1164382
Gerlinger, M., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366, 883–892.
pubmed: 22397650
pmcid: 4878653
doi: 10.1056/NEJMoa1113205
Driessens, G., et al. (2012). Defining the mode of tumour growth by clonal analysis. Nature, 488, 527–530.
pubmed: 22854777
pmcid: 5553110
doi: 10.1038/nature11344
Schepers, A. G., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337, 730–735.
pubmed: 22855427
doi: 10.1126/science.1224676
pmcid: 22855427
Winterhoff, B. J., Maile, M., Mitra, A. K., Sebe, A., Bazzaro, M., Geller, M. A., et al. (2017). Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells. Gynecologic Oncology, 144, 598–606.
pubmed: 28111004
pmcid: 5316302
doi: 10.1016/j.ygyno.2017.01.015
Konecny, G. E., Wang, C., Hamidi, H., Winterhoff, B., Kalli, K. R., Dering, J., et al. (2014). Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. Journal of the National Cancer Institute, 106, dju249.
pubmed: 25269487
pmcid: 4271115
doi: 10.1093/jnci/dju249
Cai, D. L., & Jin, L. P. (2017). Immune cell population in ovarian tumor microenvironment. Journal of Cancer, 8, 2915–2923.
pubmed: 28928882
pmcid: 5604442
doi: 10.7150/jca.20314
Navin, N. E. (2014). Tumor evolution in response to chemotherapy: Phenotype versus genotype. Cell Reports, 6, 417–419.
pubmed: 24529750
doi: 10.1016/j.celrep.2014.01.035
pmcid: 24529750
Almendro, V., Cheng, Y. K., Randles, A., Itzkovitz, S., Marusyk, A., Ametller, E., et al. (2014). Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Reports, 6, 514–527.
pubmed: 24462293
doi: 10.1016/j.celrep.2013.12.041
pmcid: 24462293
Shah, M. M., & Landen, C. N. (2014). Ovarian cancer stem cells: Are they real and why are they important? Gynecologic Oncology, 132, 483–489.
pubmed: 24321398
doi: 10.1016/j.ygyno.2013.12.001
pmcid: 24321398
Burgos-Ojeda, D., Rueda, B. R., & Buckanovich, R. J. (2012). Ovarian cancer stem cell markers: Prognostic and therapeutic implications. Cancer Letters, 322, 1–7.
pubmed: 22334034
pmcid: 4431611
doi: 10.1016/j.canlet.2012.02.002
Chen, W., Dong, J., Haiech, J., Kilhoffer, M. C., & Zeniou, M. (2016). Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells International, 2016, 1740936.
pubmed: 27418931
pmcid: 4932171
Nassar, D., & Blanpain, C. (2016). Cancer stem cells: Basic concepts and therapeutic implications. Annual Review of Pathology, 11, 47–76.
pubmed: 27193450
doi: 10.1146/annurev-pathol-012615-044438
pmcid: 27193450
Takeishi, S., & Nakayama, K. I. (2016). To wake up cancer stem cells, or to let them sleep, that is the question. Cancer Science, 107, 875–881.
pubmed: 27116333
pmcid: 4946711
doi: 10.1111/cas.12958
Bast, R. C., Hennessy, B., & Mills, G. B. (2009). The biology of ovarian cancer: New opportunities for translation. Nature Reviews. Cancer, 9, 415–428.
pubmed: 19461667
pmcid: 2814299
doi: 10.1038/nrc2644
Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.
pubmed: 12778135
doi: 10.1038/nrc1098
pmcid: 12778135
Micalizzi, D. S., Maheswaran, S., & Haber, D. A. (2017). A conduit to metastasis: Circulating tumor cell biology. Genes & Development, 31, 1827–1840.
doi: 10.1101/gad.305805.117
Ramsköld, D., Luo, S., Wang, Y. C., Li, R., Deng, Q., Faridani, O. R., et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology, 30, 777–782.
pubmed: 22820318
pmcid: 3467340
doi: 10.1038/nbt.2282
Ting, D. T., Wittner, B. S., Ligorio, M., Vincent Jordan, N., Shah, A. M., Miyamoto, D. T., et al. (2014). Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Reports, 8, 1905–1918.
pubmed: 25242334
doi: 10.1016/j.celrep.2014.08.029
pmcid: 25242334
Théry, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nature Reviews. Immunology, 9, 581–593.
pubmed: 19498381
doi: 10.1038/nri2567
pmcid: 19498381
Liu, Y., Gu, Y., & Cao, X. (2015). The exosomes in tumor immunity. Oncoimmunology, 4, e1027472.
pubmed: 26405598
pmcid: 4570093
doi: 10.1080/2162402X.2015.1027472
James Hurley, L. H., Brock, G., Sinclair, I., Sullivan, R. J., O’Neill, V. J., Skog, J., & Flaherty, K. (2015). Profiling exosomal mRNAs in patients undergoing immunotherapy for malignant melanoma. Journal of Clinical Oncology, 33, e22159.
doi: 10.1200/jco.2015.33.15_suppl.e22159
Shih, A. J., Menzin, A., Whyte, J., Lovecchio, J., Liew, A., Khalili, H., et al. (2018). Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. PLoS One, 13, e0206785.
pubmed: 30383866
pmcid: 6211742
doi: 10.1371/journal.pone.0206785
Izar, B., Tirosh, I., Stover, E. H., Wakiro, I., Cuoco, M. S., et al. (2020). A single-cell landscape of high-grade serous ovarian cancer. Nature Medicine, 26(8), 1271–1279.
pubmed: 32572264
pmcid: 7723336
doi: 10.1038/s41591-020-0926-0
HERCULES Project: Comprehensive characterization and effective combinatorial targeting of high-grade serous ovarian cancer via single-cell analysis. Retrieved from http://www.project-hercules.eu .