A comprehensive model based on temporal dynamics of peripheral T cell repertoire for predicting post-treatment distant metastasis of nasopharyngeal carcinoma.
Biomarkers
Clonal Evolution
/ drug effects
Computational Biology
/ methods
Disease Progression
Gene Expression Profiling
Genetic Variation
High-Throughput Nucleotide Sequencing
Humans
Kaplan-Meier Estimate
Leukocyte Count
Lymphocyte Count
Models, Biological
Nasopharyngeal Carcinoma
/ diagnosis
Nasopharyngeal Neoplasms
/ diagnosis
Neoplasm Metastasis
Neoplasm Staging
Prognosis
Receptors, Antigen, T-Cell
/ genetics
T-Lymphocytes
/ immunology
Comprehensive model
Distant metastasis
Nasopharyngeal carcinoma
Peripheral blood
T cell receptor repertoire (TCR repertoire)
Treatment
Journal
Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
15
05
2021
accepted:
08
07
2021
pubmed:
4
8
2021
medline:
1
3
2022
entrez:
3
8
2021
Statut:
ppublish
Résumé
Many nasopharyngeal carcinoma (NPC) patients develop distant metastases after treatment, leading to poor outcomes. To date, there are no peripheral biomarkers suitable for all NPC patients to predict distant metastasis. Hence, we purposed to develop a noninvasive comprehensive model for predicting post-treatment distant metastasis of all NPC. Since T-cell receptor β chain (TCRB) repertoire has achieved prognostic prediction in many cancers, the clinical characteristics and parameters of TCRB repertoire of 71 cases of peripheral blood samples (pairwise pre-treatment and post-treatment samples from 40 NPC patients who without (nM, n = 21) or with (M, n = 19) post-treatment distant metastasis) were collected. The least absolute shrinkage and selection operator algorithm was used to construct a distant metastasis prediction model. In terms of TCRB repertoire parameters, the diversity of TCRB repertoire was significantly decreased in M group after treatment but not in nM group. Ascending TCRB diversity and higher similarity between pre- and post-treatment samples showed better distant metastasis-free survival (DMFS). The similarity still had robust DMFS prediction in patients with reduced TCRB diversity. More importantly, the 5-factor comprehensive model consisting of basic clinical characteristics and TCRB repertoire indices showed a higher prognostic accuracy than any one individual factor in DMFS predicting. In conclusion, treatment had different effects on the composition of TCRB repertoire in patients without and with post-treatment distant metastasis. The dynamics of TCRB diversity, the similarity of TCRB repertoires, and combinations of these factors with basic clinical characteristics could serve as noninvasive DMFS predictors for all NPC patients.
Identifiants
pubmed: 34342668
doi: 10.1007/s00262-021-03016-0
pii: 10.1007/s00262-021-03016-0
doi:
Substances chimiques
Biomarkers
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
675-688Subventions
Organisme : CAMS Innovation Fund for Medical Sciences
ID : CIFMS, 2016-I2M-3-005
Organisme : National Key R&D Program of China
ID : 2018YFC1705104
Organisme : Basic Research Fund of Cancer Hospital, Chinese Academy of Medical Sciences
ID : JK2014B16
Organisme : Heilongjiang Postdoctoral Funds for Scientific Research
ID : LBH-Z20168
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Chua MLK, Wee JTS, Hui EP, Chan ATC (2016) Nasopharyngeal carcinoma. The Lancet 387:1012–1024. https://doi.org/10.1016/s0140-6736(15)00055-0
doi: 10.1016/s0140-6736(15)00055-0
Lo KW, To KF, Huang DP (2004) Focus on nasopharyngeal carcinoma. Cancer Cell 5:423–428. https://doi.org/10.1016/s1535-6108(04)00119-9
doi: 10.1016/s1535-6108(04)00119-9
pubmed: 15144950
Lee AW, Ng WT, Chan LL, Hung WM, Chan CC, Sze HC, Chan OS, Chang AT, Yeung RM (2014) Evolution of treatment for nasopharyngeal cancer–success and setback in the intensity-modulated radiotherapy era. Radiother Oncol 110:377–384. https://doi.org/10.1016/j.radonc.2014.02.003
doi: 10.1016/j.radonc.2014.02.003
pubmed: 24630534
Wu L, Chung YL (2019) Tumor-Infiltrating T Cell receptor-beta repertoires are linked to the risk of late chemoradiation-induced temporal lobe necrosis in locally advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 104:165–176. https://doi.org/10.1016/j.ijrobp.2019.01.002
doi: 10.1016/j.ijrobp.2019.01.002
pubmed: 30654091
Lai SZ, Li WF, Chen L et al (2011) How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys 80:661–668. https://doi.org/10.1016/j.ijrobp.2010.03.024
doi: 10.1016/j.ijrobp.2010.03.024
pubmed: 20643517
Lee AW, Sze WM, Au JS et al (2005) Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int J Radiat Oncol Biol Phys 61:1107–1116. https://doi.org/10.1016/j.ijrobp.2004.07.702
doi: 10.1016/j.ijrobp.2004.07.702
pubmed: 15752890
Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8:512–522. https://doi.org/10.1038/nri2318
doi: 10.1038/nri2318
pubmed: 18469829
pmcid: 5573867
Costa AI, Koning D, Ladell K et al (2015) Complex T-cell receptor repertoire dynamics underlie the CD8+ T-cell response to HIV-1. J Virol 89:110–119. https://doi.org/10.1128/JVI.01765-14
doi: 10.1128/JVI.01765-14
pubmed: 25320304
Wang GC, Dash P, McCullers JA, Doherty PC, Thomas PG (2012) T cell receptor alphabeta diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3003647
doi: 10.1126/scitranslmed.3003647
pubmed: 23253610
pmcid: 3794457
Galon J, Mlecnik B, Bindea G et al (2014) Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol 232:199–209. https://doi.org/10.1002/path.4287
doi: 10.1002/path.4287
pubmed: 24122236
Jin YB, Luo W, Zhang GY et al (2018) TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. Cancer Immunol Immunother 67:1719–1730. https://doi.org/10.1007/s00262-018-2237-6
doi: 10.1007/s00262-018-2237-6
pubmed: 30155576
Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262. https://doi.org/10.1038/46218
doi: 10.1038/46218
pubmed: 10580495
Chung YL, Wu ML (2018) Spatiotemporal homogeneity and distinctness of the T-cell receptor beta-chain repertoires in Epstein-Barr virus-associated primary and metastatic nasopharyngeal carcinomas. Int J Cancer 143:610–620. https://doi.org/10.1002/ijc.31336
doi: 10.1002/ijc.31336
pubmed: 29468660
Jia Q, Zhou J, Chen G et al (2015) Diversity index of mucosal resident T lymphocyte repertoire predicts clinical prognosis in gastric cancer. Oncoimmunology 4:e1001230. https://doi.org/10.1080/2162402X.2014.1001230
doi: 10.1080/2162402X.2014.1001230
pubmed: 26137399
pmcid: 4485732
Cui JH, Lin KR, Yuan SH et al (2018) TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer. Front Immunol 9:2729. https://doi.org/10.3389/fimmu.2018.02729
doi: 10.3389/fimmu.2018.02729
pubmed: 30524447
pmcid: 6262070
Tang X-R, Li Y-Q, Liang S-B et al (2018) Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. Lancet Oncol 19:382–393. https://doi.org/10.1016/s1470-2045(18)30080-9
doi: 10.1016/s1470-2045(18)30080-9
pubmed: 29428165
Turchaninova MA, Davydov A, Britanova OV et al (2016) High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc 11:1599–1616. https://doi.org/10.1038/nprot.2016.093
doi: 10.1038/nprot.2016.093
pubmed: 27490633
Douek DC, Betts MR, Brenchley JM, Hill BJ, Ambrozak DR, Ngai KL, Karandikar NJ, Casazza JP, Koup RA (2002) A novel approach to the analysis of specificity, clonality, and frequency of hiv-specific T cell responses reveals a potential mechanism for control of viral escape. J Immunol 168:3099–3104. https://doi.org/10.4049/jimmunol.168.6.3099
doi: 10.4049/jimmunol.168.6.3099
pubmed: 11884484
Wang C, Sanders CM, Yang Q et al (2010) High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc Natl Acad Sci U S A 107:1518–1523. https://doi.org/10.1073/pnas.0913939107
doi: 10.1073/pnas.0913939107
pubmed: 20080641
pmcid: 2824416
Britanova OV, Putintseva EV, Shugay M et al (2014) Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol 192:2689–2698. https://doi.org/10.4049/jimmunol.1302064
doi: 10.4049/jimmunol.1302064
pubmed: 24510963
Egorov ES, Merzlyak EM, Shelenkov AA et al (2015) Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. J Immunol 194:6155–6163. https://doi.org/10.4049/jimmunol.1500215
doi: 10.4049/jimmunol.1500215
pubmed: 25957172
Shugay M, Britanova OV, Merzlyak EM et al (2014) Towards error-free profiling of immune repertoires. Nat Methods 11:653–655. https://doi.org/10.1038/nmeth.2960
doi: 10.1038/nmeth.2960
pubmed: 24793455
Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, Chudakov DM (2015) MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods 12:380–381. https://doi.org/10.1038/nmeth.3364
doi: 10.1038/nmeth.3364
pubmed: 25924071
Shugay M, Bagaev DV, Turchaninova MA et al (2015) VDJtools: unifying Post-analysis of T Cell receptor repertoires. PLoS Comput Biol 11:e1004503. https://doi.org/10.1371/journal.pcbi.1004503
doi: 10.1371/journal.pcbi.1004503
pubmed: 26606115
pmcid: 4659587
Nazarov VI, Pogorelyy MV, Komech EA, Zvyagin IV, Bolotin DA, Shugay M, Chudakov DM, Lebedev YB, Mamedov IZ (2015) tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics 16:175. https://doi.org/10.1186/s12859-015-0613-1
doi: 10.1186/s12859-015-0613-1
pubmed: 26017500
pmcid: 4445501
Liu LT, Chen QY, Tang LQ et al (2018) The prognostic value of treatment-related lymphopenia in nasopharyngeal carcinoma patients. Cancer Res Treat 50:19–29. https://doi.org/10.4143/crt.2016.595
doi: 10.4143/crt.2016.595
pubmed: 28392551
Chua ML, Tan SH, Kusumawidjaja G, Shwe MT, Cheah SL, Fong KW, Soong YL, Wee JT, Tan TW (2016) Neutrophil-to-lymphocyte ratio as a prognostic marker in locally advanced nasopharyngeal carcinoma: a pooled analysis of two randomised controlled trials. Eur J Cancer 67:119–129. https://doi.org/10.1016/j.ejca.2016.08.006
doi: 10.1016/j.ejca.2016.08.006
pubmed: 27640138
Wang J, Bie Z, Zhang Y et al (2021) Prognostic value of the baseline circulating T cell receptor beta chain diversity in advanced lung cancer. Oncoimmunology 10:1899609. https://doi.org/10.1080/2162402X.2021.1899609
doi: 10.1080/2162402X.2021.1899609
pubmed: 33796410
pmcid: 7993185
Liu YY, Yang QF, Yang JS et al (2019) Characteristics and prognostic significance of profiling the peripheral blood T-cell receptor repertoire in patients with advanced lung cancer. Int J Cancer 145:1423–1431. https://doi.org/10.1002/ijc.32145
doi: 10.1002/ijc.32145
pubmed: 30664810
Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206
pubmed: 3680944
Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E (2013) The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest 31:140–144. https://doi.org/10.3109/07357907.2012.762780
doi: 10.3109/07357907.2012.762780
pubmed: 23362951
pmcid: 3991115
Ladbury CJ, Rusthoven CG, Camidge DR, Kavanagh BD, Nath SK (2019) Impact of radiation dose to the host immune system on tumor control and survival for stage III non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 105:346–355. https://doi.org/10.1016/j.ijrobp.2019.05.064
doi: 10.1016/j.ijrobp.2019.05.064
pubmed: 31175902
Sage EK, Schmid TE, Sedelmayr M, Gehrmann M, Geinitz H, Duma MN, Combs SE, Multhoff G (2016) Comparative analysis of the effects of radiotherapy versus radiotherapy after adjuvant chemotherapy on the composition of lymphocyte subpopulations in breast cancer patients. Radiother Oncol 118:176–180. https://doi.org/10.1016/j.radonc.2015.11.016
doi: 10.1016/j.radonc.2015.11.016
pubmed: 26683801
Sethuraman SN, Ranjan A (2016) Neoantigen activation, protein translocation and targeted drug delivery in combination with radiotherapy. Ther Deliv 7:377–385. https://doi.org/10.4155/tde-2016-0005
doi: 10.4155/tde-2016-0005
pubmed: 27250535
Wu F, Wang R, Lu H et al (2014) Concurrent chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma: treatment outcomes of a prospective, multicentric clinical study. Radiother Oncol 112:106–111. https://doi.org/10.1016/j.radonc.2014.05.005
doi: 10.1016/j.radonc.2014.05.005
pubmed: 24933452
Sun X, Su S, Chen C et al (2014) Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities. Radiother Oncol 110:398–403. https://doi.org/10.1016/j.radonc.2013.10.020
doi: 10.1016/j.radonc.2013.10.020
pubmed: 24231245
Sun XS, Liu SL, Luo MJ et al (2019) The association between the development of radiation therapy, image technology, and chemotherapy, and the survival of patients with nasopharyngeal carcinoma: a cohort study from 1990 to 2012. Int J Radiat Oncol Biol Phys 105:581–590. https://doi.org/10.1016/j.ijrobp.2019.06.2549
doi: 10.1016/j.ijrobp.2019.06.2549
pubmed: 31319091
Leung SF, Chan KC, Ma BB et al (2014) Plasma Epstein-Barr viral DNA load at midpoint of radiotherapy course predicts outcome in advanced-stage nasopharyngeal carcinoma. Ann Oncol 25:1204–1208. https://doi.org/10.1093/annonc/mdu117
doi: 10.1093/annonc/mdu117
pubmed: 24638904
Wang WY, Twu CW, Chen HH et al (2013) Long-term survival analysis of nasopharyngeal carcinoma by plasma Epstein-Barr virus DNA levels. Cancer 119:963–970. https://doi.org/10.1002/cncr.27853
doi: 10.1002/cncr.27853
pubmed: 23065693
Liang SB, Zhang N, Chen DM, Yang XL, Chen BH, Zhao H, Lu RL, Chen Y, Fu LW (2019) Prognostic value of gross tumor regression and plasma Epstein Barr Virus DNA levels at the end of intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma. Radiother Oncol 132:223–229. https://doi.org/10.1016/j.radonc.2018.10.010
doi: 10.1016/j.radonc.2018.10.010
pubmed: 30366725