Integrative approach to interpret DYRK1A variants, leading to a frequent neurodevelopmental disorder.
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
26
01
2021
accepted:
15
06
2021
revised:
14
06
2021
pubmed:
5
8
2021
medline:
12
11
2021
entrez:
4
8
2021
Statut:
ppublish
Résumé
DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.
Identifiants
pubmed: 34345024
doi: 10.1038/s41436-021-01263-1
pii: S1098-3600(21)05187-X
doi:
Substances chimiques
Protein-Tyrosine Kinases
EC 2.7.10.1
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2150-2159Informations de copyright
© 2021. The Author(s), under exclusive licence to the American College of Medical Genetics and Genomics.
Références
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8. https://doi.org/10.1038/nature21062
doi: 10.1038/nature21062
Gonzalez-Mantilla AJ, Moreno-De-Luca A, Ledbetter DH, Martin CL. A cross-disorder method to identify novel candidate genes for developmental brain disorders. JAMA Psychiatry. 2016;73:275–83. https://doi.org/10.1001/jamapsychiatry.2015.2692
doi: 10.1001/jamapsychiatry.2015.2692
pubmed: 26817790
pmcid: 5333489
Møller RS, Kübart S, Hoeltzenbein M, Heye B, Vogel I, Hansen CP, et al. Truncation of the Down syndrome candidate gene DYRK1A in two unrelated patients with microcephaly. Am J Hum Genet. 2008;82:1165–70. https://doi.org/10.1016/j.ajhg.2008.03.001
doi: 10.1016/j.ajhg.2008.03.001
pubmed: 18405873
pmcid: 2427221
Courcet J-B, Faivre L, Malzac P, Masurel-Paulet A, Lopez E, Callier P, et al. The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy. J Med Genet. 2012;49:731–36.
doi: 10.1136/jmedgenet-2012-101251
van Bon BW, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry. 2016;21:126–132. https://doi.org/10.1038/mp.2015.5
doi: 10.1038/mp.2015.5
pubmed: 25707398
Bronicki LM, Redin C, Drunat S, Piton A, Lyons M, Passemard S, et al. Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. Eur J Hum Genet. 2015;23:1482–1487. https://doi.org/10.1038/ejhg.2015.29
doi: 10.1038/ejhg.2015.29
pubmed: 25920557
pmcid: 4613470
Ruaud L, Mignot C, Guët A, Ohl C, Nava C, Héron D, et al. DYRK1A mutations in two unrelated patients. Eur J Med Genet. 2015;58:168–174. https://doi.org/10.1016/j.ejmg.2014.12.014
doi: 10.1016/j.ejmg.2014.12.014
pubmed: 25641759
Ji J, Lee H, Argiropoulos B, Dorrani N, Mann J, Martinez-Agosto JA, et al. DYRK1A haploinsufficiency causes a new recognizable syndrome with microcephaly, intellectual disability, speech impairment, and distinct facies. Eur J Hum Genet. 2015;23:1473–1481. https://doi.org/10.1038/ejhg.2015.71
doi: 10.1038/ejhg.2015.71
pubmed: 25944381
pmcid: 4613469
Meissner LE, Macnamara EF, D’souza P, Yang J, Vezina G, Undiagnosed Diseases N. et al. DYRK1A pathogenic variants in two patients with syndromic intellectual disability and a review of the literature. Mol Genet Genomic Med. 2020;7:e1544. https://doi.org/10.1002/mgg3.1544
doi: 10.1002/mgg3.1544
O’roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–1622. https://doi.org/10.1126/science.1227764
doi: 10.1126/science.1227764
pubmed: 23160955
pmcid: 3528801
Earl RK, Turner TN, Mefford HC, Hudac CM, Gerdts J, Eichler EE, et al. Clinical phenotype of ASD-associated DYRK1A haploinsufficiency. Mol Autism. 2017;8:54. https://doi.org/10.1186/s13229-017-0173-5
doi: 10.1186/s13229-017-0173-5
pubmed: 29034068
pmcid: 5629761
Himpel S, Panzer P, Eirmbter K, Czajkowska H, Sayed M, Packman LC, et al. Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem J. 2001;359:497–505. https://doi.org/10.1042/0264-6021:3590497
doi: 10.1042/0264-6021:3590497
pubmed: 11672423
pmcid: 1222170
Hämmerle B, Elizalde C, Tejedor FJ. The spatio-temporal and subcellular expression of the candidate Down syndrome gene Mnb/Dyrk1A in the developing mouse brain suggests distinct sequential roles in neuronal development. Eur J Neurosci. 2008;27:1061–1074. https://doi.org/10.1111/j.1460-9568.2008.06092.x
doi: 10.1111/j.1460-9568.2008.06092.x
pubmed: 18364031
Tejedor FJ, Hämmerle B. MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J. 2011;278:223–235. https://doi.org/10.1111/j.1742-4658.2010.07954.x
doi: 10.1111/j.1742-4658.2010.07954.x
pubmed: 21156027
Duchon A, Herault Y. DYRK1A, a dosage-sensitive gene involved in neurodevelopmental disorders, is a target for drug development in Down syndrome. Front Behav Neurosci. 2016;10:104. https://doi.org/10.3389/fnbeh.2016.00104
doi: 10.3389/fnbeh.2016.00104
pubmed: 27375444
pmcid: 4891327
Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, et al. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J. 2001;355:609–615. https://doi.org/10.1042/bj3550609
doi: 10.1042/bj3550609
pubmed: 11311121
pmcid: 1221774
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30
pubmed: 25741868
pmcid: 4544753
Choufani S, Cytrynbaum C, Chung BH, Turinsky AL, Grafodatskaya D, Chen YA, et al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat Commun. 2015;6:10207. https://doi.org/10.1038/ncomms10207
doi: 10.1038/ncomms10207
pubmed: 26690673
Choufani S, Gibson WT, Turinsky AL, Chung B, Wang T, Garg K, et al. DNA methylation signature for EZH2 functionally classifies sequence variants in three PRC2 complex genes. Am J Hum Genet. 2020;106:596–610. https://doi.org/10.1016/j.ajhg.2020.03.008
doi: 10.1016/j.ajhg.2020.03.008
pubmed: 32243864
pmcid: 7212265
Chater-Diehl E, Ejaz R, Cytrynbaum C, Siu MT, Turinsky A, Choufani S, et al. New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome. BMC Med Genomics. 2019;12:105. https://doi.org/10.1186/s12920-019-0555-y
doi: 10.1186/s12920-019-0555-y
pubmed: 31288860
pmcid: 6617651
Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, et al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am J Hum Genet. 2019;104:685–700. https://doi.org/10.1016/j.ajhg.2019.03.008
doi: 10.1016/j.ajhg.2019.03.008
pubmed: 30929737
pmcid: 6451739
Jang SM, Azebi S, Soubigou G, Muchardt C. DYRK1A phoshorylates histone H3 to differentially regulate the binding of HP1 isoforms and antagonize HP1-mediated transcriptional repression. EMBO Rep. 2014;15:686–694. https://doi.org/10.15252/embr.201338356
doi: 10.15252/embr.201338356
pubmed: 24820035
pmcid: 4197879
Li S, Xu C, Fu Y, Lei PJ, Yao Y, Yang W, et al. DYRK1A interacts with histone acetyl transferase p300 and CBP and localizes to enhancers. Nucleic Acids Res. 2018;46:11202–11213. https://doi.org/10.1093/nar/gky754
doi: 10.1093/nar/gky754
pubmed: 30137413
pmcid: 6265467
Redin C, Gérard B, Lauer J, Herenger Y, Muller J, Quartier A, et al. Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing. J Med Genet. 2014;51:724–736. https://doi.org/10.1136/jmedgenet-2014-102554
doi: 10.1136/jmedgenet-2014-102554
pubmed: 25167861
Carion N, Briand A, Cuisset L, Pacot L, Afenjar A, Bienvenu T. Loss of the KH1 domain of FMR1 in humans due to a synonymous variant causes global developmental retardation. Gene. 2020;753:144793. https://doi.org/10.1016/j.gene.2020.144793
doi: 10.1016/j.gene.2020.144793
pubmed: 32446918
Nasser H, Vera L, Elmaleh-Bergès M, Steindl K, Letard P, Teissier N, et al. CDK5RAP2 primary microcephaly is associated with hypothalamic, retinal and cochlear developmental defects. J Med Genet. 2020;57:389–399. https://doi.org/10.1136/jmedgenet-2019-106474
doi: 10.1136/jmedgenet-2019-106474
pubmed: 32015000
Balak C, Benard M, Schaefer E, Iqbal S, Ramsey K, Ernoult-Lange M, et al. Rare de novo missense variants in RNA helicase DDX6 cause intellectual disability and dysmorphic features and lead to P-body defects and RNA dysregulation. Am J Hum Genet. 2019;105:509–525. https://doi.org/10.1016/j.ajhg.2019.07.010
doi: 10.1016/j.ajhg.2019.07.010
pubmed: 31422817
pmcid: 6731366
Quartier A, Chatrousse L, Redin C, Keime C, Haumesser N, Maglott-Roth A, et al. Genes and pathways regulated by androgens in human neural cells, potential candidates for the male excess in autism spectrum disorder. Biol Psychiatry. 2018;84:239–252. https://doi.org/10.1016/j.biopsych.2018.01.002
doi: 10.1016/j.biopsych.2018.01.002
pubmed: 29428674
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033
doi: 10.1093/bioinformatics/btp033
pubmed: 19151095
pmcid: 2672624
Kress A, Lecompte O, Poch O, Thompson JD. PROBE: analysis and visualization of protein block-level evolution. Bioinformatics. 2018;34:3390–3392. https://doi.org/10.1093/bioinformatics/bty367
doi: 10.1093/bioinformatics/bty367
pubmed: 29741582
Mattioli F, Isidor B, Abdul-Rahman O, Gunter A, Huang L, Kumar R, et al. Clinical and functional characterization of recurrent missense variants implicated in THOC6-related intellectual disability. Hum Mol Genet. 2019;28:952–960. https://doi.org/10.1093/hmg/ddy391
doi: 10.1093/hmg/ddy391
pubmed: 30476144
Quartier A, Courraud J, Thi Ha T, McGillivray G, Isidor B, Rose K, et al. Novel mutations in NLGN3 causing autism spectrum disorder and cognitive impairment. Hum Mutat. 2019;40:2021–2032. https://doi.org/10.1002/humu.23836
doi: 10.1002/humu.23836
pubmed: 31184401
Widowati EW, Ernst S, Hausmann R, Müller-Newen G, Becker W Functional characterization of DYRK1A missense variants associated with a syndromic form of intellectual deficiency and autism. Biol Open. 2018;7. https://doi.org/10.1242/bio.032862
Lee K-S, Choi M, Kwon D-W, Kim D, Choi JM, Kim AK, et al. A novel de novo heterozygous DYRK1A mutation causes complete loss of DYRK1A function and developmental delay. Sci Rep. 2020;10:9849. https://doi.org/10.1038/s41598-020-66750-y
doi: 10.1038/s41598-020-66750-y
pubmed: 32555303
pmcid: 7299959
Blackburn ATM, Bekheirnia N, Uma VC, Corkins ME, Xu Y, Rosenfeld JA, et al. DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genet Med. 2019;21:2755–2764. https://doi.org/10.1038/s41436-019-0576-0
doi: 10.1038/s41436-019-0576-0
pubmed: 31263215
pmcid: 6895419
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–315. https://doi.org/10.1038/ng.2892
doi: 10.1038/ng.2892
pubmed: 24487276
pmcid: 3992975
Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, et al. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis. 2019;127:210–222. https://doi.org/10.1016/j.nbd.2019.02.022
doi: 10.1016/j.nbd.2019.02.022
pubmed: 30831192
pmcid: 6753933
Dang T, Duan WY, Yu B, Tong DL, Cheng C, Zhang YF, et al. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Mol Psychiatry. 2018;23:747–758. https://doi.org/10.1038/mp.2016.253
doi: 10.1038/mp.2016.253
pubmed: 28167836
Lepagnol-Bestel A-M, Zvara A, Maussion G, Quignon F, Ngimbous B, Ramoz N, et al. DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet. 2009;18:1405–1414. https://doi.org/10.1093/hmg/ddp047
doi: 10.1093/hmg/ddp047
pubmed: 19218269