Clinical variability of neurofibromatosis 1: A modifying role of cooccurring PTPN11 variants and atypical brain MRI findings.


Journal

Clinical genetics
ISSN: 1399-0004
Titre abrégé: Clin Genet
Pays: Denmark
ID NLM: 0253664

Informations de publication

Date de publication:
11 2021
Historique:
revised: 28 07 2021
received: 26 04 2021
accepted: 30 07 2021
pubmed: 5 8 2021
medline: 19 2 2022
entrez: 4 8 2021
Statut: ppublish

Résumé

Neurofibromatosis 1 (NF1) is a disorder characterized by variable expressivity caused by loss-of-function variants in NF1, encoding neurofibromin, a protein negatively controlling RAS signaling. We evaluated whether concurrent variation in proteins functionally linked to neurofibromin contribute to the variable expressivity of NF1. Parallel sequencing of a RASopathy gene panel in 138 individuals with molecularly confirmed clinical diagnosis of NF1 identified missense variants in PTPN11, encoding SHP2, a positive regulator of RAS signaling, in four subjects from three unrelated families. Three subjects were heterozygous for a gain-of-function variant and showed a severe expression of NF1 (developmental delay, multiple cerebral neoplasms and peculiar cortical MRI findings), and features resembling Noonan syndrome (a RASopathy caused by activating variants in PTPN11). Conversely, the fourth subject, who showed an attenuated presentation, carried a previously unreported PTPN11 variant that had a hypomorphic behavior in vitro. Our findings document that functionally relevant PTPN11 variants occur in a small but significant proportion of subjects with NF1 modulating disease presentation, suggesting a model in which the clinical expression of pathogenic NF1 variants is modified by concomitant dysregulation of protein(s) functionally linked to neurofibromin. We also suggest targeting of SHP2 function as an approach to treat evolutive complications of NF1.

Identifiants

pubmed: 34346503
doi: 10.1111/cge.14040
doi:

Substances chimiques

PTPN11 protein, human EC 3.1.3.48
Protein Tyrosine Phosphatase, Non-Receptor Type 11 EC 3.1.3.48

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

563-572

Subventions

Organisme : AIRC (IG 21614), EJP-RD (NSEuroNet) and Italian Ministry of Health (Ricerca Corrente 2020)
Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : IG 21614

Informations de copyright

© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Uusitalo E, Leppävirta J, Koffert A, et al. Incidence and mortality of neurofibromatosis: a total population study in Finland. J Invest Dermatol. 2015;135(3):904-906.
Assunto A, Ferrara U, De Luca A, et al. Isoform-specific NF1 mRNA levels correlate with disease severity in Neurofibromatosis type 1. Orphanet J Rare Dis. 2019;14(1):261.
Santoro C, Di Rocco F, Kossorotoff M, et al. Moyamoya syndrome in children with neurofibromatosis type 1: Italian-French experience. Am J Med Genet Part A. 2017;173(6):1521-1530.
D'Arco F, D'Amico A, Caranci F, Di Paolo N, Melis D, Brunetti A. Cerebrovascular stenosis in neurofibromatosis type 1 and utility of magnetic resonance angiography: our experience and literature review. Radiol Med. 2014;119(6):415-421.
D'Amico A, Ugga L, Cocozza S, et al. Multimodal evaluation of the cerebrovascular reserve in Neurofibromatosis type 1 patients with Moyamoya syndrome. Neurol Sci. 2021;42(2):655-663.
Neurofibromatosis. Conference statement. National Institutes of Health consensus development conference. Arch Neurol. 1988;45(5):575-578.
Legius E, Messiaen L, Wolkenstein P, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med. 2021. https://doi.org/10.1038/s41436-021-01170-5
Kehrer-Sawatzki H, Mautner V-F, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet. 2017;136(4):349-376.
Koczkowska M, Chen Y, Callens T, et al. Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting NF1 codons 844-848. Am J Hum Genet. 2018;102(1):69-87.
Koczkowska M, Callens T, Chen Y, et al. Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1. Hum Mutat. 2020;41(1):299-315.
Upadhyaya M, Huson SM, Davies M, et al. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet. 2007;80(1):140-151.
Koczkowska M, Callens T, Gomes A, et al. Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): an update of genotype-phenotype correlation. Genet Med. 2019;21(4):867-876.
Ekvall S, Sjörs K, Jonzon A, Vihinen M, Annerén G, Bondeson ML. Novel association of neurofibromatosis type 1-causing mutations in families with neurofibromatosis-Noonan syndrome. Am J Med Genet Part A. 2014;164A(3):579-587.
Pinna V, Lanari V, Daniele P, et al. High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation. Hum Mutat. 2015;36(11):1052-1063.
Santoro C, Maietta A, Giugliano T, et al. Arg1809 substitution in neurofibromin: further evidence of a genotype-phenotype correlation in neurofibromatosis type 1. Eur J Hum Genet. 2015;23(11):1460-1461.
Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet. 2013;381(9863):333-342.
Tartaglia M, Niemeyer CM, Shannon KM, Loh ML. SHP-2 and myeloid malignancies. Curr Opin Hematol. 2004;11(1):44-50.
Tartaglia M, Martinelli S, Stella L, et al. NF1 gene mutations represent the major molecular event underlying neurofibromatosis-Noonan syndrome. Am J Hum Genet. 2005;77(6):1092-1101.
Nyström AM, Ekvall S, Strömberg B, et al. A severe form of Noonan syndrome and autosomal dominant café-au-lait spots - evidence for different genetic origins. Acta Paediatr Int J Paediatr. 2009;98(4):693-698.
Bertola DR, Pereira AC, Passetti F, et al. Neurofibromatosis-Noonan syndrome: molecular evidence of the concurrence of both disorders in a patient. Am J Med Genet. 2005;136(3):242-254.
Thiel C, Wilken M, Zenker M, et al. Independent NF1 and PTPN11 mutations in a family with neurofibromatosis- Noonan syndrome. Am J Med Genet Part A. 2009;149A(6):1263-1267.
Prada CE, Zarate YA, Hagenbuch S, Lovell A, Schorry EK, Hopkin RJ. Lethal presentation of neurofibromatosis and Noonan syndrome. Am J Med Genet Part A. 2011;155(6):1360-1366.
Pasmant E, Amiel J, Rodriguez D, Vidaud M, Vidaud D, Parfait B. Two independent de novo mutations as a cause for neurofibromatosis type 1 and Noonan syndrome in a single family. Am J Med Genet Part A. 2012;158A(9):2290-2291.
Friedman JM, Birch PH. Type 1 neurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am J Med Genet. 1997;70(2):138-143.
Huson S. Neurofibromatosis: emerging phenotypes, mechanisms and management. Clin Med (Northfield Il). 2008;8(6):611-617.
Pinna V, Daniele P, Calcagni G, et al. Prevalence, type, and molecular spectrum of NF1 mutations in patients with neurofibromatosis type 1 and congenital heart disease. Genes. 2019;10(9):675.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-423.
Pannone L, Bocchinfuso G, Flex E, et al. Structural, functional, and clinical characterization of a novel PTPN11 mutation cluster underlying Noonan syndrome. Hum Mutat. 2017;38(4):451-459.
Dodge HW, Love JG, Craig WM, et al. Gliomas of the optic nerves. AMA Arch Neurol Psychiatry. 1958;79(6):607-621.
D'Amico A, Mazio F, Ugga L, et al. Medullary unidentified bright objects in Neurofibromatosis type 1: a case series. BMC Pediatr. 2018;18(1):91.
Easton DF, Ponder MA, Huson SM, Ponder BA. An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet. 1993;53:305-313.
De Raedt T, Beert E, Pasmant E, et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014;514(7521):247-251.
Pasmant E, Sabbagh A, Masliah-Planchon J, et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst. 2011;103(22):1713-1722.
Warrington NM, Sun T, Luo J, et al. The cyclic AMP pathway is a sex-specific modifier of glioma risk in type I neurofibromatosis patients. Cancer Res. 2015;75(1):16-21.
Barbier C, Chabernaud C, Barantin L, et al. Proton MR spectroscopic imaging of basal ganglia and thalamus in neurofibromatosis type 1: correlation with T2 hyperintensities. Neuroradiology. 2011;53(2):141-148.
Salman MS, Hossain S, Alqublan L, Bunge M, Rozovsky K. Cerebellar radiological abnormalities in children with neurofibromatosis type 1: part 1 - clinical and neuroimaging findings. Cerebellum Ataxias. 2018;5:14.
Billiet T, Mädler B, D'Arco F, et al. Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. NeuroImage Clin. 2014;4:649-658.
Gill DS, Hyman SL, Steinberg A, North KN. Age-related findings on MRI in neurofibromatosis type 1. Pediatr Radiol. 2006;36(10):1048-1056.
Roy A, Barbarot S, Charbonnier V, et al. Examining the frontal subcortical brain vulnerability hypothesis in children with neurofibromatosis type 1: are T2-weighted hyperintensities related to executive dysfunction? Neuropsychology. 2015;29(3):473-484.
Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215-222.
Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865-877.
Fisher MJ, Shih C-S, Rhodes SD, et al. Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial. Nat Med. 2021;27(1):165-173.
Kerr DL, Haderk F, Bivona TG. Allosteric SHP2 inhibitors in cancer: targeting the intersection of RAS, resistance, and the immune microenvironment. Curr Opin Chem Biol. 2021;62(1):1-12.
Bobone S, Pannone L, Biondi B, et al. Peptide-based inhibitors of protein-protein interactions of Src homology 2 domain-containing phosphatase 2. BioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2020.08.28.271809v1
Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015;15(5):290-301.

Auteurs

Alessandra D'Amico (A)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
Tortorella Private Hospital, Salerno, Italy.

Carmen Rosano (C)

Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy.

Luca Pannone (L)

Genetics and Rare Diseases Research Division, Pediatric Hospital Bambino Gesù, IRCCS, Rome, Italy.

Valentina Pinna (V)

Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.

Antonia Assunto (A)

Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy.

Marialetizia Motta (M)

Genetics and Rare Diseases Research Division, Pediatric Hospital Bambino Gesù, IRCCS, Rome, Italy.

Lorenzo Ugga (L)

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
Tortorella Private Hospital, Salerno, Italy.

Paola Daniele (P)

Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.

Roberta Mandile (R)

Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy.

Lucio Mariniello (L)

Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy.

Maria Anna Siano (MA)

Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Salerno, Italy.

Claudia Santoro (C)

Referral Centre of Neurofibromatosis, Department of Woman and Child, Specialistic and General Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy.

Giulio Piluso (G)

Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.

Simone Martinelli (S)

Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.

Pietro Strisciuglio (P)

Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy.

Alessandro De Luca (A)

Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.

Marco Tartaglia (M)

Genetics and Rare Diseases Research Division, Pediatric Hospital Bambino Gesù, IRCCS, Rome, Italy.

Daniela Melis (D)

Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy.
Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Salerno, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH