The effect of plant domestication on host control of the microbiota.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
05 08 2021
Historique:
received: 07 03 2021
accepted: 16 07 2021
entrez: 6 8 2021
pubmed: 7 8 2021
medline: 19 11 2021
Statut: epublish

Résumé

Macroorganisms are colonized by microbial communities that exert important biological and ecological functions, the composition of which is subject to host control and has therefore been described as "an ecosystem on a leash". However, domesticated organisms such as crop plants are subject to both artificial selection and natural selection exerted by the agricultural ecosystem. Here, we propose a framework for understanding how host control of the microbiota is influenced by domestication, in which a double leash acts from domesticator to host and host to microbes. We discuss how this framework applies to a plant compartment that has demonstrated remarkable phenotypic changes during domestication: the seed.

Identifiants

pubmed: 34354230
doi: 10.1038/s42003-021-02467-6
pii: 10.1038/s42003-021-02467-6
pmc: PMC8342519
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

936

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M011224/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R009236/1
Pays : United Kingdom

Informations de copyright

© 2021. The Author(s).

Références

mBio. 2016 Mar 31;7(2):e02099
pubmed: 27034285
PLoS One. 2015 Feb 13;10(2):e0117231
pubmed: 25680199
mBio. 2020 Nov 17;11(6):
pubmed: 33203759
Nat Biotechnol. 2019 Feb;37(2):139-143
pubmed: 30718880
Nat Commun. 2020 Sep 18;11(1):4717
pubmed: 32948774
Phytopathology. 2014 Mar;104(3):232-9
pubmed: 24111576
Microbiol Res. 2019 Jun - Aug;223-225:33-43
pubmed: 31178049
Cell Metab. 2017 Jul 5;26(1):110-130
pubmed: 28625867
Curr Opin Microbiol. 2017 Jun;37:15-22
pubmed: 28437661
Cell Host Microbe. 2015 Mar 11;17(3):392-403
pubmed: 25732064
Curr Biol. 2019 Jul 22;29(14):R705-R714
pubmed: 31336092
Trends Plant Sci. 2017 Jul;22(7):555-558
pubmed: 28592368
Appl Environ Microbiol. 2019 Jan 9;85(2):
pubmed: 30413478
Ann Inst Pasteur (Paris). 1958 Dec;95(6):795-8
pubmed: 13617727
Microbiome. 2018 Jan 3;6(1):3
pubmed: 29298729
Proc Biol Sci. 2007 Dec 22;274(1629):3119-26
pubmed: 17939985
Environ Microbiol. 2016 Dec;18(12):5161-5174
pubmed: 27612299
PLoS One. 2013 Jul 03;8(7):e67556
pubmed: 23844027
Microb Ecol. 2011 Jul;62(1):188-97
pubmed: 21625971
Science. 2015 Sep 11;349(6253):1172-3
pubmed: 26359393
Microb Ecol. 2017 Jan;73(1):188-200
pubmed: 27592345
Appl Environ Microbiol. 2015 Feb;81(4):1257-66
pubmed: 25501471
PLoS Biol. 2012;10(11):e1001424
pubmed: 23185130
Nat Plants. 2021 Jan;7(1):60-72
pubmed: 33398157
Annu Rev Entomol. 2015 Jan 7;60:35-58
pubmed: 25341108
Front Microbiol. 2017 Jan 23;8:11
pubmed: 28167932
Microbiome. 2020 Feb 14;8(1):20
pubmed: 32059747
Hortic Res. 2018 Nov 1;5:56
pubmed: 30393538
Nat Rev Microbiol. 2021 Oct;19(10):623-638
pubmed: 33875863
Front Genet. 2020 Aug 18;11:00973
pubmed: 33014021
Nature. 2002 Aug 8;418(6898):700-7
pubmed: 12167878
BMC Plant Biol. 2014 Dec 20;14:1599
pubmed: 25526984
Trends Ecol Evol. 2020 May;35(5):426-439
pubmed: 32294424
Evol Lett. 2017 May 09;1(2):64-72
pubmed: 30283639
Sci Rep. 2020 Jan 29;10(1):1452
pubmed: 31996781
PLoS One. 2011;6(6):e20396
pubmed: 21673982
Front Plant Sci. 2018 Sep 26;9:1357
pubmed: 30319666
Nat Plants. 2015;1(6):
pubmed: 27019743
Sci Rep. 2020 Feb 27;10(1):3575
pubmed: 32107443
Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8641-8
pubmed: 17494757
Microbiome. 2018 Apr 26;6(1):79
pubmed: 29695286
Am J Bot. 2008 Sep;95(9):1063-71
pubmed: 21632426
New Phytol. 2012 Oct;196(1):29-48
pubmed: 22889076
Annu Rev Phytopathol. 2004;42:271-309
pubmed: 15283668
Sci Rep. 2018 Jun 20;8(1):9393
pubmed: 29925862
Trends Plant Sci. 2012 Aug;17(8):478-86
pubmed: 22564542
Microbiome. 2018 Mar 27;6(1):58
pubmed: 29587885
Mol Biol Evol. 2016 Jul;33(7):1740-53
pubmed: 27189559
Environ Microbiol. 2018 Dec;20(12):4444-4460
pubmed: 30047192
ISME J. 2018 May;12(5):1167-1170
pubmed: 29335636
Nat Rev Genet. 2013 Dec;14(12):840-52
pubmed: 24240513
Plant Soil. 2018 Jan;422(1-2):135-154
pubmed: 29416180
mBio. 2015 Mar 24;6(2):
pubmed: 25805735
ISME J. 2017 Oct;11(10):2244-2257
pubmed: 28585939
Microbiologyopen. 2019 Mar;8(3):e00662
pubmed: 29888428
Plant Mol Biol. 2016 Apr;90(6):635-44
pubmed: 26085172
ISME J. 2015 May;9(5):1177-94
pubmed: 25350160
Front Plant Sci. 2018 Jan 23;9:24
pubmed: 29410675
Phytopathology. 2016 Apr;106(4):330-8
pubmed: 26756827
Microbiome. 2018 Aug 16;6(1):143
pubmed: 30115122
Science. 2020 Apr 17;368(6488):270-274
pubmed: 32299947
J Adv Res. 2020 Dec 17;31:75-86
pubmed: 34194833
G3 (Bethesda). 2016 Aug 09;6(8):2523-30
pubmed: 27317774
Nature. 2017 Aug 2;548(7665):43-51
pubmed: 28770836

Auteurs

Riccardo Soldan (R)

University of Oxford, Department of Plant Sciences, Oxford, UK. riccardosoldan@hotmail.it.

Marco Fusi (M)

Edinburgh Napier University, School of Applied Sciences, Edinburgh, UK.

Massimiliano Cardinale (M)

University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy.

Daniele Daffonchio (D)

King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia.

Gail M Preston (GM)

University of Oxford, Department of Plant Sciences, Oxford, UK. gail.preston@plants.ox.ac.uk.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Lakes Salinity Archaea Bacteria Microbiota
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH