A Role for SGLT-2 Inhibitors in Treating Non-diabetic Chronic Kidney Disease.


Journal

Drugs
ISSN: 1179-1950
Titre abrégé: Drugs
Pays: New Zealand
ID NLM: 7600076

Informations de publication

Date de publication:
Sep 2021
Historique:
accepted: 12 07 2021
pubmed: 8 8 2021
medline: 15 1 2022
entrez: 7 8 2021
Statut: ppublish

Résumé

In recent years, inhibitors of the sodium-glucose co-transporter 2 (SGLT2 inhibitors) have been shown to have significant protective effects on the kidney and the cardiovascular system in patients with diabetes. This effect is also manifested in chronic kidney disease (CKD) patients and is minimally due to improved glycaemic control. Starting from these positive findings, SGLT2 inhibitors have also been tested in patients with non-diabetic CKD or heart failure with reduced ejection fraction. Recently, the DAPA-CKD trial showed a significantly lower risk of CKD progression or death from renal or cardiovascular causes in a mixed population of patients with diabetic and non-diabetic CKD receiving dapagliflozin in comparison with placebo. In patients with heart failure and reduced ejection fraction, two trials (EMPEROR-Reduced and DAPA-HF) also found a significantly lower risk of reaching the secondary renal endpoint in those treated with an SGLT2 inhibitor in comparison with placebo. This also applied to patients with CKD. Apart from their direct mechanism of action, SGLT2 inhibitors have additional effects that could be of particular interest for patients with non-diabetic CKD. Among these, SGLT2 inhibitors reduce blood pressure and serum acid uric levels and can increase hemoglobin levels. Some safety issues should be further explored in the CKD population. SGLT2 inhibitors can minimally increase potassium levels, but this has not been shown by the CREDENCE trial. They also increase magnesium and phosphate reabsorption. These effects could become more significant in patients with advanced CKD and will need monitoring when these agents are used more extensively in the CKD population. Conversely, they do not seem to increase the risk of acute kidney injury.

Identifiants

pubmed: 34363606
doi: 10.1007/s40265-021-01573-3
pii: 10.1007/s40265-021-01573-3
doi:

Substances chimiques

Sodium, Dietary 0
Sodium-Glucose Transporter 2 Inhibitors 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1491-1511

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33.
doi: 10.1016/S0140-6736(20)30045-3
Al-Kibria GM, Crispen R. Prevalence and trends of chronic kidney disease and its risk factors among US adults: an analysis of NHANES 2003–18. Rev Med Rep. 2020;20: 101193.
Liyanage T, Ninomiya T, Jha V. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385:1975–82.
pubmed: 25777665 doi: 10.1016/S0140-6736(14)61601-9
Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.
pubmed: 15385656 doi: 10.1056/NEJMoa041031
Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389(10075):1238–52.
pubmed: 27887750 pmcid: 27887750 doi: 10.1016/S0140-6736(16)32064-5
Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of diet in renal disease study group. N Engl J Med. 1994;330:877–84.
pubmed: 8114857 doi: 10.1056/NEJM199403313301301
ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.
doi: 10.1056/NEJMoa1001286
Schrier RW, Abebe KZ, Perrone RD, Torres VE, Braun WE, Steinman TI, HALT-PKD Trial Investigators, et al. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371:2255–66.
pubmed: 25399733 pmcid: 4343258 doi: 10.1056/NEJMoa1402685
Wright JT Jr, Bakris G, Greene T, Agodoa LY, Appel LJ, Xharleston J, African American Study of Kidney Disease and Hypertension Study Group, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288:2421–31.
pubmed: 12435255 doi: 10.1001/jama.288.19.2421
Cheung AK, Rahman M, Reboussin DM, Craven TE, Greene T, Kimmel PL, et al. Effects of intensive BP control in CKD. J Am Soc Nephrol. 2017;28:2812–23.
pubmed: 28642330 pmcid: 5576945 doi: 10.1681/ASN.2017020148
SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink Km, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.
doi: 10.1056/NEJMoa1511939
Xie X, Liu Y, Perkovic V, Li X, Ninomiya T, Hou W, et al. Renin-angiotensin system inhibitors and kidney and cardiovascular out- comes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am J Kidney Dis. 2016;67:728–41.
pubmed: 26597926 doi: 10.1053/j.ajkd.2015.10.011
Zhang Y, He D, Zhang W, Xing Y, Guo Y, Wang F, et al. ACE inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3–5: a network meta-analysis of randomised clinical trials. Drugs. 2020;80(8):797–811.
pubmed: 32333236 pmcid: 7242277 doi: 10.1007/s40265-020-01290-3
Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, AIPRI Study Group, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-convert- ing enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139:244–52.
pubmed: 12965979 doi: 10.7326/0003-4819-139-4-200308190-00006
Casas JP, Chua W, Loukogeorgakis S, Vallance P, Smeeth L, Hingorani AD, et al. effect of inhibitors of the renin-angiotensin system and other antihypertensve drugs on renal outcomes: systematic review and meta-analysis. Lancet. 2005;366:2026–33.
pubmed: 16338452 doi: 10.1016/S0140-6736(05)67814-2
de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65:2309–20.
pubmed: 15149345 doi: 10.1111/j.1523-1755.2004.00653.x
Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.
pubmed: 18378520 doi: 10.1056/NEJMoa0801317
Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, ALTITUDE Investigators, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.
pubmed: 23121378 doi: 10.1056/NEJMoa1208799
Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, VA NEPHRON-D Investigators, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.
pubmed: 24206457 doi: 10.1056/NEJMoa1303154
Feng Y, Huang R, Kavanagh J, Li L, Zeng X, Li Y, Fu P. Efficacy and safety of dual blockade of analysis. J Cardiovasc Drugs. 2019;19(3):259–86.
doi: 10.1007/s40256-018-00321-5
https://www.ema.europa.eu/en/documents/referral/restriction-combined-use-medicines-affecting-renin-angiotensin-system-ras_en.pdf . Accessed 12 June 2021
D’Elia L, Rossi G, di Cola MS, Savino I, Galletti F, Strazzullo P. Meta-analysis of the effect of dietary sodium restriction with or without concomitant renin-angiotensin-aldosterone system-inhibiting treatment on albuminuria. Clin J Am Soc Nephrol. 2015;10(9):1542–52.
pubmed: 26240299 pmcid: 4559518 doi: 10.2215/CJN.09110914
Qiao Y, Shin JI, Sang Y, Inker LA, Secora A, Luo S, et al. Discontinuation of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in chronic kidney disease. Mayo Clin Proc. 2019;94(11):2220–9.
pubmed: 31619367 doi: 10.1016/j.mayocp.2019.05.031
Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001;18:247–56.
pubmed: 11780753 doi: 10.1080/09687680110090456
Wright EM. Renal Na(+)-glucose co-transporters. Am J Physiol Renal Physiol. 2001;280:F10–8.
pubmed: 11133510 doi: 10.1152/ajprenal.2001.280.1.F10
Scheepers A, Joost HG, Schurmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enteral Nutr. 2004;28:364–71.
doi: 10.1177/0148607104028005364
Hirayama BA, Wong HC, Smith CD, Hagenbuch BA, Hediger MA, Wright EM. Intestinal and renal Na+/glucose co-transporters share common structures. Am J Physiol. 1991;261:C296-304.
pubmed: 1714681 doi: 10.1152/ajpcell.1991.261.2.C296
Sabino-Silva R, Mori RC, David-Silva A, Okamoto MM, Freitas HS, Machado UF. The Na(+)/glucose co-transporters: from genes to therapy. Braz J Med Biol Res. 2010;43:1019–26.
pubmed: 21049241 doi: 10.1590/S0100-879X2010007500115
Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol. 2010;5:133–41.
pubmed: 19965550 doi: 10.2215/CJN.04010609
Shepard BD, Cheval L, Peterlin Z, Firestein S, Koepsell H, Doucet A, et al. A renal olfactory receptor aids in kidney glucose handling. Sci Rep. 2016;6:35215.
pubmed: 27739476 pmcid: 5064317 doi: 10.1038/srep35215
Sopjani M, Bhavsar SK, Fraser S, Kemp BE, Föller M, Lang F. Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase. Mol Membr Biol. 2010;27:137–44.
pubmed: 20334581 doi: 10.3109/09687681003616870 pmcid: 20334581
Birnir B, Lee HS, Hediger MA, Wright EM. Expression and characterization of the intestinal Na+/glucose co-transporter in COS-7 cells. Biochim Biophys Acta. 1990;1048:100–4.
pubmed: 2105101 doi: 10.1016/0167-4781(90)90028-Z pmcid: 2105101
Tabatabai NM, Sharma M, Blumenthal SS, Petering DH. Enhanced expressions of sodium-glucose co-transporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract. 2009;83:e27-30.
pubmed: 19095325 doi: 10.1016/j.diabres.2008.11.003 pmcid: 19095325
Augustin R. The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life. 2010;62:315–33.
pubmed: 20209635 pmcid: 20209635
Chintalapati C, Keller T, Mueller TD, Gorboulev V, Schäfer N, Zilkowski I, et al. Protein RS1 (RSC1A1) downregulates the exocytotic pathway of glucose transporter SGLT1 at low intracellular glucose via inhibition of ornithine decarboxylase. Mol Pharmacol. 2016;90:508–21.
pubmed: 27555600 doi: 10.1124/mol.116.104521 pmcid: 27555600
Veyhl M, Keller T, Gorboulev V, Vernaleken A, Koepsell H. RS1 (RSC1A1) regulates the exocytotic pathway of Na
pubmed: 16788146 doi: 10.1152/ajprenal.00068.2006 pmcid: 16788146
Balen D, Ljubojevic M, Breljak D, Brzica H, Zlender V, Koepsell H, et al. Revised immunolocalization of the Na+-D-glucose co-transporter SGLT1 in rat organs with an improved antibody. Am J Physiol Cell Physiol. 2008;295:C475–89.
pubmed: 18524944 doi: 10.1152/ajpcell.00180.2008 pmcid: 18524944
Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22:104–12.
pubmed: 20616166 pmcid: 3014039 doi: 10.1681/ASN.2010030246
Gorboulev V, Schurmann A, Vallon V, Kipp H, Jaschke A, Klessen D, et al. Na(+)-D-glucose co-transporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012;61:187–96.
pubmed: 22124465 doi: 10.2337/db11-1029 pmcid: 22124465
Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306:F188–93.
pubmed: 24226519 doi: 10.1152/ajprenal.00518.2013 pmcid: 24226519
Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30–50% of filtered glucose load in humans. Diabetes. 2013;62:3324–8.
pubmed: 24065789 pmcid: 3781482 doi: 10.2337/db13-0604
Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35:2061–8.
pubmed: 22773704 pmcid: 3447826 doi: 10.2337/dc11-2189
Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose co-transporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134:752–72.
pubmed: 27470878 doi: 10.1161/CIRCULATIONAHA.116.021887 pmcid: 27470878
Pollock CA, Lawrence JR, Field MJ. Tubular sodium handling and tubuloglomerular feedback in experimental diabetes mellitus. Am J Physiol Renal Physiol. 1991;260:946-F952.
doi: 10.1152/ajprenal.1991.260.6.F946
Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol. 1999;10:2569–76.
pubmed: 10589696 doi: 10.1681/ASN.V10122569 pmcid: 10589696
Kidokoro K, Cherney DZI, Bozovic A, Nagasu H, Satoh M, Kanda E, et al. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation. 2019;140:303–15.
pubmed: 30773020 doi: 10.1161/CIRCULATIONAHA.118.037418 pmcid: 30773020
Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose co-transporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97.
pubmed: 24334175 doi: 10.1161/CIRCULATIONAHA.113.005081 pmcid: 24334175
Thomson SC, Vallon V. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Am J Physiol Renal Physiol. 2021;320:F761–71.
pubmed: 33645318 pmcid: 8174804 doi: 10.1152/ajprenal.00552.2020
Osorio H, Coronel I, Arellano A, Pacheco U, Bautista R, Franco M, et al. Sodium-glucose co-transporter inhibition prevents oxidative stress in the kidney of diabetic rats. Oxid Med Cell Longev. 2012;2012: 542042.
pubmed: 23227274 pmcid: 3512343 doi: 10.1155/2012/542042
Tanaka S, Sugiura Y, Saito H, Sugahara M, Higashijima Y, Yamaguchi J, et al. Sodium–glucose co-transporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int. 2018;94:912–25.
pubmed: 30021702 doi: 10.1016/j.kint.2018.04.025 pmcid: 30021702
van Bommel EJM, Muskiet MHA, van Baar MJB, Tonneijck L, Smits MM, Emanuel AL, et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 2020;97:202–12.
pubmed: 31791665 doi: 10.1016/j.kint.2019.09.013 pmcid: 31791665
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.
doi: 10.1056/NEJMoa1504720
Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:2099.
pubmed: 29166232 doi: 10.1056/NEJMoa1611925 pmcid: 29166232
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.
doi: 10.1056/NEJMoa1811744
Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, VERTIS CV Investigators, et al. Ertugliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2020;383:1425–35.
pubmed: 32966714 doi: 10.1056/NEJMoa2004967 pmcid: 32966714
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, DECLARE–TIMI 58 Investigators, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.
pubmed: 30415602 doi: 10.1056/NEJMoa1812389 pmcid: 30415602
Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Furtado RHM, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–9.
doi: 10.1016/S0140-6736(18)32590-X
Tang H, Fang Z, Wang T, Cui W, Zhai S, Song Y. Meta-analysis of effects of sodium-glucose co-transporter 2 inhibitors on cardiovascular outcomes and all-cause mortality among patients with type 2 diabetes mellitus. Am J Cardiol. 2016;118(11):1774–80.
pubmed: 27666177 doi: 10.1016/j.amjcard.2016.08.061 pmcid: 27666177
Saad M, Mahmoud AN, Elgendy IY, Abuzaid A, Barakat AF, Elgendy AY, et al. Cardiovascular outcomes with sodium- glucose co-transporter-2 inhibitors in patients with type II diabetes mellitus: a meta-analysis of placebo-controlled randomized trials. Int J Cardiol. 2017;228:352–8.
pubmed: 27866027 doi: 10.1016/j.ijcard.2016.11.181 pmcid: 27866027
Wu JH, Foote C, Blomster J, Toyama T, Perkovic V, Sundström J, et al. Effects of sodium- glucose co-transporter- 2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta- analysis. Lancet Diabetes Endocrinol. 2016;4(5):411–9.
pubmed: 27009625 doi: 10.1016/S2213-8587(16)00052-8 pmcid: 27009625
Savarese G, D’Amore C, Federici M, De Martino F, Delle Srottaglie S, Marciano C, et al. Effects of dipeptidyl peptidase 4 inhibitors and sodium-glucose linked co-transporter-2 Inhibitors on cardiovascular events in patients with type 2 diabetes mellitus: a meta- analysis. Int J Cardiol. 2016;220:595–601.
pubmed: 27390996 doi: 10.1016/j.ijcard.2016.06.208
Monami M, Dicembrini I, Mannucci E. Effects of SGLT-2 inhibitors on mortality and cardiovascular events: a comprehensive meta-analysis of randomized controlled trials. Acta Diabetol. 2017;54(1):19–36.
pubmed: 27488726 doi: 10.1007/s00592-016-0892-7 pmcid: 27488726
Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol. 2016;15:37.
pubmed: 26895767 pmcid: 4761166 doi: 10.1186/s12933-016-0356-y
Salsali A, Kim G, Woerle HJ, Broedl UC, Hantel S. Cardiovascular safety of empagliflozin in patients with type 2 diabetes: a meta-analsis of data from randomized placebo-controlled trials. Diabetes Obes Metab. 2016;18(10):1034–40.
pubmed: 27376831 pmcid: 5096016 doi: 10.1111/dom.12734
Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, SCORED Investigators, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–39.
pubmed: 33200891 doi: 10.1056/NEJMoa2030186 pmcid: 33200891
Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46.
pubmed: 30953516 pmcid: 6451223 doi: 10.1186/s12933-019-0852-y
Sarzani R, Giulietti F, Di Pentima C, Spannella F. Sodium-glucose co-transporter-2 inhibitors: peculiar “hybrid” diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis. 2020;30(10):1622–32.
pubmed: 32631704 doi: 10.1016/j.numecd.2020.05.030 pmcid: 32631704
Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, et al. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep. 2020;8(2): e14360.
pubmed: 31994353 pmcid: 6987478 doi: 10.14814/phy2.14360
Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. 24-hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA study. Circulation. 2018;139(18):2089–97.
pmcid: 6493695 doi: 10.1161/CIRCULATIONAHA.118.037076
Scheen AJ. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr Cardiol Rep. 2019;21:70.
pubmed: 31227915 doi: 10.1007/s11886-019-1165-1
Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP. Role of the sympathetic nervous system in regulation of the sodium glucose co-transporter 2. J Hypertens. 2017;35:2059–68.
pubmed: 28598954 doi: 10.1097/HJH.0000000000001434
McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes. A meta-analysis. JAMA Cardiol. 2021;6(2):148–58.
pubmed: 33031522 doi: 10.1001/jamacardio.2020.4511
Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, EMPA-REG OUTCOME Investigators, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.
doi: 10.1056/NEJMoa1515920
Seidu S, Kunutsor SK, Cos X, Gillani S, Khunti K, For and on behalf of Primary Care Diabetes Europe, et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: a systematic review and meta-analysis. Prim Care Diabetes. 2018;12(3):265–83.
pubmed: 29482993 doi: 10.1016/j.pcd.2018.02.001
Zhang XL, Zhu QQ, Chen YH, Li XL, Chen F, Huang JA, et al. Cardiovascular safety, long- term non cardiovascular safety, and efficacy of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis. J Am Heart Assoc. 2018;7(2): e007165.
pubmed: 29353233 pmcid: 5850151
Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol. 2003;14:2873–82.
pubmed: 14569097 doi: 10.1097/01.ASN.0000092790.89332.D2
Nespoux J, Patel R, Zhang H, Huang W, Freeman B, Sanders PW, et al. Gene knockout of the Na+-glucose co-transporter SGLT2i in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol. 2020;318(5):F1100–12.
pubmed: 32116018 pmcid: 7294332 doi: 10.1152/ajprenal.00607.2019
Pirklbauer M, Bernd M. Empagliflozin inhibits basal and IL-1β-mediated MCP-1/CCL2 and endothelin-1 expression in human proximal tubular cells. Int J Mol Sci. 2020;21:8189.
pmcid: 7663377 doi: 10.3390/ijms21218189 pubmed: 7663377
Castoldi G, Carletti R, Ippolito S, Colzani M, Barzaghi F, Stella A, et al. Renal anti-fibrotic effect of sodium glucose co-transporter 2 inhibition in angiotensin II-dependent hypertension. Am J Nephrol. 2020;51:119–29.
pubmed: 31910407 doi: 10.1159/000505144
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak LO, Wanchai K, Chatsudthipong V, et al. Dapagliflozin, a sodium- glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab. 2018;20:2617–26.
pubmed: 29923295 doi: 10.1111/dom.13441
Yamato M, Kato N, Kakino A, Yamada KI, Inoguchi T. Low dose of sodium-glucose transporter 2 inhibitor ipragliflozin attenuated renal dysfunction and interstitial fibrosis in adenine-induced chronic kidney disease in mice without diabetes. Metabol Open. 2020;7: 100049.
pubmed: 33015603 pmcid: 7520892 doi: 10.1016/j.metop.2020.100049
Takagi S, Li J, Takagaki Y, Kitada M, Nitta K, Takasu T, et al. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J Diabetes Investig. 2018;9:1025–32.
pubmed: 29352520 pmcid: 6123054 doi: 10.1111/jdi.12802
Zhang Y, Nakano D, Guan Y, Hitomi H, Uemura A, Masaki T, et al. A sodium-glucose co-transporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int. 2018;94:524–35.
pubmed: 30045814 doi: 10.1016/j.kint.2018.05.002
Kong KH, Oh HJ, Lim BJ, Kim M, Han KH, Choi YH, et al. Selective tubular activation of hypoxia-inducible factor-2alpha has dual effects on renal fibrosis. Sci Rep. 2017;7(1):11351.
pubmed: 28900259 pmcid: 5596020 doi: 10.1038/s41598-017-11829-2
Cassis P, Locatelli M, Cerullo D, Corna D, Buelli S, Zanchi C, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018;3(15): e98720.
pmcid: 6129124 doi: 10.1172/jci.insight.98720 pubmed: 6129124
Wakisaka M, Nagao T, Yoshinari M. Sodium glucose cotransporter 2 (SGLT2) plays as a physiological glucose sensor and regulates cellular contractility in rat mesangial cells. PLoS ONE. 2016;11(3): e0151585.
pubmed: 26999015 pmcid: 4801351 doi: 10.1371/journal.pone.0151585
Paccosi S, Giachi M, Di Gennaro P, Guglielmotti A, Parenti A. The chemokine (C-C motif) ligand protein synthesis inhibitor bindarit prevents cytoskeletal rearrangement and contraction of human mesangial cells. Cytokine. 2016;85:92–100.
pubmed: 27309675 doi: 10.1016/j.cyto.2016.06.012
Mohamed DI, Khairy E, Saad SST, Habib EK, Hamouda MA. Potential protective effects of dapagliflozin in gentamicin induced nephrotoxicity rat model via modulation of apoptosis associated miRNAs. Gene. 2019;707:198–204.
pubmed: 31075409 doi: 10.1016/j.gene.2019.05.009
Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Parvez F, et al. Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK-Akt-eNOS pathway in the isoprenaline-induced oxidative stress model. Sci Rep. 2020;10(1):14659.
pubmed: 32887916 pmcid: 7474058 doi: 10.1038/s41598-020-71599-2
Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, et al. A role for tubular Na+/H+ exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol. 2020;319(4):F712–28.
pubmed: 32893663 doi: 10.1152/ajprenal.00264.2020
Mannon EC, O’Connor PM. Alkali supplementation as a therapeutic in chronic kidney disease: what mediates protection? Am J Physiol Renal Physiol. 2020;319(6):F1090–104.
pubmed: 33166183 doi: 10.1152/ajprenal.00343.2020
Zhang Y, Thai K, Kepecs DM, Gilbert RE. Sodium-glucose linked co-transporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS ONE. 2016;11(1): e0144640.
pubmed: 26741142 pmcid: 4711803 doi: 10.1371/journal.pone.0144640
Ma Q, Steiger S, Anders HJ. Sodium glucose transporter-2 inhibition has no renoprotective effects on non-diabetic chronic kidney disease. Physiol Rep. 2017;5: e13228.
pubmed: 28364032 pmcid: 5392518 doi: 10.14814/phy2.13228
Wheeler DC, Stefansson BV, Batiushin M, Bilchenko O, Cherney DZI, Chertow GM, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020;35(10):1700–11.
pubmed: 32862232 pmcid: 7538235 doi: 10.1093/ndt/gfaa234
Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, DAPA-CKD Trial Committees and Investigators, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46.
doi: 10.1056/NEJMoa2024816
Locatelli F, Del Vecchio L, Pozzoni P, D’Amico M, Andrulli S. Is it the agent or the blood pressure level that matters for renal and vascular protection in chronic nephropathies? Kidney Int. 2005;67(suppl 93):S15-19.
doi: 10.1111/j.1523-1755.2005.09304.x
Wheeler DC, Stefánsson BV, Jongs N, Chertow GM, Greene T, Hou FF, DAPA-CKD Trial Committees and Investigators, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(1):22–31.
pubmed: 33338413 doi: 10.1016/S2213-8587(20)30369-7
Wheeler DC, Toto RD, Stefansson BV, Jongs N, Chertow GM, Greene T, for the DAPA-CKD Trial Committees and Investigators, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021. https://doi.org/10.1016/j.kint.2021.03.033 (S0085-2538(21)00396-3; Online ahead of print).
doi: 10.1016/j.kint.2021.03.033 pubmed: 33878338
McMurray JJV, Wheeler DC, Stefánsson BV, Jongs N, Postmus D, Correa-Rotter R, DAPA-CKD Trial Committees and Investigators, et al. Effect of dapagliflozin on clinical outcomes in patients with chronic kidney disease, with and without cardiovascular disease. Circulation. 2021;143(5):438–48.
pubmed: 33186054 doi: 10.1161/CIRCULATIONAHA.120.051675
Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Gafor AHA, Greasley PJ, DIAMOND investigators, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020;8(7):582–93.
pubmed: 32559474 doi: 10.1016/S2213-8587(20)30162-5
Rajasekeran H, Reich HN, Hladunewich MA, Cattran D, Lovshin JA, Lytvyn Y, et al. Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. Am J Physiol Renal Physiol. 2018;314(3):F412–22.
pubmed: 29141939 doi: 10.1152/ajprenal.00445.2017
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24.
pubmed: 32865377 doi: 10.1056/NEJMoa2022190
Petrie MC, Verma S, Docherty KF, Inzucchi SE, Anand I, Bělohlávek J, et al. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA. 2020;323:1353–68.
pubmed: 32219386 pmcid: 7157181 doi: 10.1001/jama.2020.1906
Zannad F, Ferreira JP, Pocock SJ, Zeller C, Anker SD, Butler J, et al. Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: insights from EMPEROR-Reduced. Circulation. 2021;143(4):310–21.
pubmed: 33095032 doi: 10.1161/CIRCULATIONAHA.120.051685
Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–29.
pubmed: 32877652 doi: 10.1016/S0140-6736(20)31824-9
Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2020;384:117–28.
pubmed: 33200892 doi: 10.1056/NEJMoa2030183
Kimura G. Importance of inhibiting sodium-glucose co-transporter and its compelling indication in type 2 diabetes: pathophysiological hypothesis. J Am Soc Hypertens. 2016;10(3):271–8.
pubmed: 26874564 doi: 10.1016/j.jash.2016.01.009
Sanidas EA, Papadopoulos DP, Hatziagelaki E, Grassos C, Velliou M, Barbetseas J. Sodium glucose co-transporter 2 (SGLT2) inhibitors across the spectrum of hypertension. Am J Hypertens. 2020;33(3):207–13.
pubmed: 31541572
Tian B, Deng Y, Cai Y, Han M, Xu G. Efficacy and safety of combination therapy with sodium-glucose transporter 2 inhibitors and renin-angiotensin system blockers in patients with type 2 diabetes: a systematic review and meta-analysis. Nephrol Dial Transplant. 2021 (Online ahead of print)
Ye N, Jardine MJ, Oshima M, Hockham C, Heerspink HJL, Agarwal R, et al. Blood pressure effects of canagliflozin and clinical outcomes in type 2 diabetes and chronic kidney disease: insights from the CREDENCE Trial. Circulation. 2021;143(18):1735–49.
Chambergo-Michilot D, Tauma-Arrué A, Loli-Guevara S. Effects and safety of SGLT2 inhibitors compared to placebo in patients with heart failure: a systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2020;32: 100690.
pubmed: 33335975 pmcid: 7734238
Feig DI, Kang D-H, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–21.
pubmed: 18946066 pmcid: 2684330 doi: 10.1056/NEJMra0800885
Lytvyn Y, Škrtić M, Yang GK, Yip PM, Perkins BM, Cherney DZI. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol. 2015;308(2):F77-83.
pubmed: 25377916 doi: 10.1152/ajprenal.00555.2014
Novikov A, Fu Y, Huang W, Freeman B, Patel R, van Ginkel C, et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Renal Physiol. 2019;316(1):F173–85.
pubmed: 30427222 doi: 10.1152/ajprenal.00462.2018
Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(2):458–62.
pubmed: 28846182 doi: 10.1111/dom.13101
Verma S, Ji Q, Bhatt DL, Mazer CD, Al-Omran M, Inzucchi SE, et al. Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes: a subanalysis of EMPA-REG OUTCOME. Diabetes Obes Metab. 2020;22(7):1207–14.
pubmed: 32030863 pmcid: 7317186 doi: 10.1111/dom.13991
Stack AG, Han D, Goldwater R, Johansson S, Dronamraju N, Oscarsson J, et al. Dapagliflozin added to verinurad plus febuxostat further reduces serum uric acid in hyperuricemia: the QUARTZ Study. J Clin Endocrinol Metab. 2021;106(5):e2347–56.
Cosentino C, Dicembrini I, Nreu B, Mannucci E, Monami M. Nephrolithiasis and sodium-glucose co-transporter-2 (SGLT-2) inhibitors: a meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2019;155: 107808.
pubmed: 31401152 doi: 10.1016/j.diabres.2019.107808
Stefánsson BV, Heerspink HJL, Wheeler DC, Sjöström CD, Greasley PJ, Sartipy P, et al. Correction of anemia by dapagliflozin in patients with type 2 diabetes. J Diabetes Complicat. 2020;34(12): 107729.
doi: 10.1016/j.jdiacomp.2020.107729
Oshima M, Neuen BL, Jardine MJ, Bakris G, Edwards R, Levin A, et al. Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes Endocrinol. 2020;8(11):903–14.
pubmed: 33065060 doi: 10.1016/S2213-8587(20)30300-4
Maruyama T, Takashima H, Oguma H, Nakamura Y, Ohno M, Utsunomiya K, et al. Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technol Ther. 2019;21(12):713–20.
pubmed: 31385724 pmcid: 6875696 doi: 10.1089/dia.2019.0212
Marathias KP, Lambadiari VA, Markakis KP, Vlahakos VD, Bacharaki D, Raptis AE, et al. Competing effects of renin angiotensin system blockade and sodium-glucose co-transporter-2 inhibitors on erythropoietin secretion in diabetes. Am J Nephrol. 2020;51(5):349–56.
pubmed: 32241009 doi: 10.1159/000507272
Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells–renoprotection in diabetic nephropathy? PLoS ONE. 2013;8(2): e54442.
pubmed: 23390498 pmcid: 3563635 doi: 10.1371/journal.pone.0054442
Packer M. Mutual antagonism of hypoxia-inducible factor isoforms in cardiac, vascular, and renal disorders. JACC Basic Transl Sci. 2020;5(9):961–8.
pubmed: 33015417 pmcid: 7524787 doi: 10.1016/j.jacbts.2020.05.006
Krishan P, Singh G, Bedi O. Carbohydrate restriction ameliorates nephropathy by reducing oxidative stress and upregulating HIF-1a levels in type-1 diabetic rats. J Diabetes Metab Disord. 2017;16:47.
pubmed: 29270392 pmcid: 5735925 doi: 10.1186/s40200-017-0331-5
Bessho R, Takiyama Y, Takiyama T, et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9:14754.
pubmed: 31611596 pmcid: 6791873 doi: 10.1038/s41598-019-51343-1
Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A, et al. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020;105(4): dgaa057.
pubmed: 32044999 doi: 10.1210/clinem/dgz288
Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2020;141:704–7.
pubmed: 31707794 doi: 10.1161/CIRCULATIONAHA.119.044235
Sowton AP, Griffin JL, Murray AJ. Metabolic profiling of the diabetic heart: toward a richer picture. Front Physiol. 2019;10:639.
pubmed: 31214041 pmcid: 6555155 doi: 10.3389/fphys.2019.00639
Selvaraj S, Kelly DP, Margulies KB. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation. 2020;141(22):1800–12.
pubmed: 32479196 pmcid: 7304522 doi: 10.1161/CIRCULATIONAHA.119.045033
Cavaiola TS, Pettus J. Cardiovascular effects of sodium glucose co-transporter 2 inhibitors. Diabetes Metab Syndr Obes. 2018;11:133–48.
pubmed: 29695924 pmcid: 5905845 doi: 10.2147/DMSO.S154602
Inagaki N, Kazuoki Kondo K, Yoshinari T, Kuki H. Efficacy and safety of canagliflozin alone or as add-on to other oral antihyperglycemic drugs in Japanese patients with type 2 diabetes: A 52-week open-label study. J Diabetes Investig. 2015;6(2):210–8.
pubmed: 25802729 doi: 10.1111/jdi.12266 pmcid: 25802729
Tomita I, Kume S, Sugahara S, Osawa N, Yamahara Y, Yasuda-Yamahara M, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 2020;32(3):404–19.
pubmed: 32726607 doi: 10.1016/j.cmet.2020.06.020 pmcid: 32726607
Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, et al. SGLT2 Inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.
pubmed: 28579299 pmcid: 5478253 doi: 10.1016/j.ebiom.2017.05.028
Jones BJ, Tan T, Bloom SR. Minireview: glucagon in stress and energy homeostasis. Endocrinology. 2012;153(3):1049–54.
pubmed: 22294753 pmcid: 3281544 doi: 10.1210/en.2011-1979
Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium- glucose co-transporter 2 inhibition in ty pe 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.
pubmed: 24463454 pmcid: 3904627 doi: 10.1172/JCI72227
Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512–7.
pubmed: 25894829 doi: 10.1038/nm.3828 pmcid: 25894829
Hattori Y. Beneficial effects on kidney during treatment with sodium-glucose co-transporter 2 inhibitors: proposed role of ketone utilization. Heart Fail Rev. 2021;26(4):947–52.
pubmed: 33404998 doi: 10.1007/s10741-020-10065-7 pmcid: 33404998
Oelze M, Kröller-Schön S, Welschof P, Ansen T, Hausding M, Mikhed Y, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE. 2014;9(11): e112394.
pubmed: 25402275 pmcid: 4234367 doi: 10.1371/journal.pone.0112394
Yaribeygi H, Atkin SL, Butler AE, Sahebkar A. Sodium–glucose co-transporter inhibitors and oxidative stress: an update. J Cell Physiol. 2019;234(4):3231–7.
pubmed: 30443936 doi: 10.1002/jcp.26760 pmcid: 30443936
McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.
pubmed: 25176015 doi: 10.1056/NEJMoa1409077 pmcid: 25176015
Damman K, Gori M, Claggett B, Jhund PS, Senni M, Lefkowitz MP, et al. Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Hear Fail. 2018;6:489–98.
doi: 10.1016/j.jchf.2018.02.004
Ruggenenti P, Remuzzi G. Combined neprilysin and RAS inhibition for the failing heart: Straining the kidney to help the heart? Eur J Heart Fail. 2015;17:468–71.
pubmed: 25914256 doi: 10.1002/ejhf.267 pmcid: 25914256
Solomon SD, Jhund PS, Claggett BL, Dewan P, Køber L, Kosiborod MN, et al. Effect of dapagliflozin in patients with hfref treated with sacubitril/valsartan: the DAPA-HF trial. JACC Heart Fail. 2020;8:811–8.
pubmed: 32653447 doi: 10.1016/j.jchf.2020.04.008
Sarafidis PA, Memmos E, Alexandrou ME, Papagianni A. Mineralocorticoid receptor antagonists for nephroprotection: current evidence and future perspectives. Curr Pharm Des. 2018;24(46):5528–36.
pubmed: 30848187 doi: 10.2174/1381612825666190306162658
Barrera-Chimal J, Girerd S, Jaisser F. Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney Int. 2019;96(2):302–19.
pubmed: 31133455 doi: 10.1016/j.kint.2019.02.030
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, FIDELIO-DKD Investigators, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29.
doi: 10.1056/NEJMoa2025845
Sawamura T, Karashima S, Nagase S, Nambo H, Shimizu E, Higashitani T, et al. Effect of sodium-glucose co-transporter-2 inhibitors on aldosterone-to-renin ratio in diabetic patients with hypertension: a retrospective observational study. BMC Endocr Disord. 2020;20(1):177.
pubmed: 33256676 pmcid: 7706199 doi: 10.1186/s12902-020-00656-8
Shen L, Kristensen SL, Bengtsson O, Böhm M, de Boer RA, Docherty KF, et al. Dapagliflozin in HFrEF patients treated with mineralocorticoid receptor antagonists: an analysis of DAPA-HF. JACC Heart Fail. 2021;S2213–1779(20):30704–6.
Ortiz A, Ferro CJ, Balafa O, Burnier M, Ekart R, Halimi JM, et al. Mineralocorticoid receptors antagonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association—European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and Kidney working group of the European Society of Hypertension (ESH). Nephrol Dial Transplant. 2021. https://doi.org/10.1093/ndt/gfab167 (Online ahead of print).
doi: 10.1093/ndt/gfab167 pubmed: 33944938 pmcid: 33944938
Pelletier R, Ng K, Alkabbani W, Labib Y, Mourad N, Gamble JM. Adverse events associated with sodium glucose co-transporter 2 inhibitors: an overview of quantitative systematic reviews. Ther Adv Drug Saf. 2021;12:2042098621989134.
pubmed: 33552467 pmcid: 7844442 doi: 10.1177/2042098621989134
Zhao M, Sun S, Huang Z, Wang T, Tang H. Network meta-analysis of novel glucose-lowering drugs on risk of acute kidney injury. Clin J Am Soc Nephrol. 2020;16(1):70–8.
pubmed: 33376101 doi: 10.2215/CJN.11220720 pmcid: 33376101
Rampersad C, Kraut E, Whitlock RH, Komenda P, Woo V, Rigatto C, et al. Acute kidney injury events in patients with type 2 diabetes using SGLT2 inhibitors versus other glucose-lowering drugs: a retrospective cohort study. Am J Kidney Dis. 2020;76(4):471–9.
pubmed: 32464161 doi: 10.1053/j.ajkd.2020.03.019 pmcid: 32464161
Jardine MJ, Zhou Z, Mahaffey KW, Oshima M, Agarwal R, Bakris G, CREDENCE Study Investigators, et al. Renal, cardiovascular, and safety outcomes of canagliflozin by baseline kidney function: a secondary analysis of the CREDENCE randomized trial. J Am Soc Nephrol. 2020;31(5):1128–39.
pubmed: 32354987 pmcid: 7217416 doi: 10.1681/ASN.2019111168
Oshima M, Jardine MJ, Agarwal R, Bakris G, Cannon CP, Charytan DM, et al. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int. 2021;99(4):999–1009.
pubmed: 33316282 doi: 10.1016/j.kint.2020.10.042 pmcid: 33316282
Ryan R, Choo S, Willows J, Walker J, Prasad K, Tez D. Acute interstitial nephritis due to sodium-glucose co-transporter 2 inhibitor empagliflozin. Clin Kidney J. 2020;14(3):1020–2.
pubmed: 33777384 pmcid: 7986450 doi: 10.1093/ckj/sfaa033
Cianciolo G, De Pascalis A, Gasperoni L, Tondolo F, Zappulo F, Capelli I, et al. The off-target effects, electrolyte and mineral disorders of SGLT2i. Molecules. 2020;25(12):2757.
pmcid: 7355461 doi: 10.3390/molecules25122757
Barrett PQ, Aronson PS. Glucose and alanine inhibition of phosphate transport in renal microvillus membrane vesicles. Am J Physiol. 1982;242:126–31.
Lang F. Osmotic diuresis. Renal Physiol. 1987;10:160–73.
pubmed: 3133729 pmcid: 3133729
Blau JE, Bauman V, Conway EM, Piaggi P, Walter MF, Wright EC, et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight. 2018;3: e99123.
pmcid: 5931122 doi: 10.1172/jci.insight.99123
de Jong MA, Petrykiv SI, Laverman GD, van Herwaarden AE, de Zeeuw D, Bakker SJL, et al. Effects of dapagliflozin on circulating markers of phosphate homeostasis. Clin J Am Soc Nephrol. 2019;14(1):66–73.
pubmed: 30559106 doi: 10.2215/CJN.04530418 pmcid: 30559106
Li X, Li T, Cheng Y, Lu Y, Xue M, Xu L, et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: an updated meta-analysis. Diabetes Metab Res Rev. 2019;35(7): e3170.
pubmed: 30983141 doi: 10.1002/dmrr.3170 pmcid: 30983141
Tang H, Zhang X, Zhang J, Li Y, Del Gobbo LC, Zhai S, et al. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia. 2016;59(12):2546–51.
pubmed: 27628105 doi: 10.1007/s00125-016-4101-6 pmcid: 27628105
Weir MR, Kline I, Xie J, Edwards R, Usiskin K. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr Med Res Opin. 2014;30(9):1759–68.
pubmed: 24786834 doi: 10.1185/03007995.2014.919907 pmcid: 24786834
Gilbert RE, Mende C, Vijapurkar U, Sha S, Davies MJ, Desai M. Effects of canagliflozin on serum magnesium in patients with type 2 diabetes mellitus: a post hoc analysis of randomized controlled trials. Diabetes Ther. 2017;8(2):451–8.
pubmed: 28197834 pmcid: 5380494 doi: 10.1007/s13300-017-0232-0
Filippatos TD, Tsimihodimos V, Liamis G, Elisaf MS. SGLT2 inhibitors-induced electrolyte abnormalities: an analysis of the associated mechanisms. Diabetes Metab Syndr. 2018;12(1):59–63.
pubmed: 28826578 doi: 10.1016/j.dsx.2017.08.003 pmcid: 28826578
Wang KM, Li JW, Bhalla V, Jardine MJ, Neal B, de Zeeuw D. Canagliflozin, serum magnesium and cardiovascular outcomes—analysis from the CANVAS Program. Endocrinol Diab Metab. 2021. https://doi.org/10.1002/edm2.247 .
doi: 10.1002/edm2.247
van de Wal-Visscher ER, Kooman JP, van der Sande FM. Magnesium in chronic kidney disease: should we care? Blood Purif. 2018;45(1–3):173–8.
pubmed: 29478069 doi: 10.1159/000485212 pmcid: 29478069
Ter Braake AD, Vervloet MG, de Baaij JHF, Hoenderop JGJ. Magnesium to prevent kidney disease-associated vascular calcification: crystal clear? Nephrol Dial Transplant. 2020 (Online ahead of print).
Leenders NHJ, Vermeulen EA, van Ballegooijen AJ, Hoekstra T, de Vries R, Beulens JW, Vervloet MG. The association between circulating magnesium and clinically relevant outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Clin Nutr. 2021;40(5):3133–47.
pubmed: 33419615 doi: 10.1016/j.clnu.2020.12.015 pmcid: 33419615
Xiong J, He T, Wang M, Nie L, Zhang Y, Wang Y, et al. Serum magnesium, mortality, and cardiovascular disease in chronic kidney disease and end-stage renal disease patients: a systematic review and meta-analysis. J Nephrol. 2019;32(5):791–802.
pubmed: 30888644 doi: 10.1007/s40620-019-00601-6 pmcid: 30888644
Li D, Wang T, Shen S, Fang Z, Dong Y, Tang H. Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2017;19(3):348–55.
pubmed: 27862830 doi: 10.1111/dom.12825 pmcid: 27862830
Bakris G, Oshima M, Mahaffey KW, Agarwal R, Cannon CP, Capuano G, et al. Effects of canagliflozin in patients with baseline eGFR < 30 mL/min per 1.73 m(2): subgroup analysis of the randomized CREDENCE Trial. Clin J Am Soc Nephrol. 2020;15(12):1705–14.
pubmed: 33214158 doi: 10.2215/CJN.10140620 pmcid: 33214158
Yu J, Arnott C, Neuen BL, Heersprink HL, Mahaffey KW, Cannon CP, et al. Cardiovascular and renal outcomes with canagliflozin according to baseline diuretic use: a post hoc analysis from the CANVAS Program. ESC Heart Fail. 2021;8(2):1482–93.
pubmed: 33595905 pmcid: 8006652 doi: 10.1002/ehf2.13236
Griffin M, Riello R, Rao VS, Ivey-Miranda J, Fleming J, Maulion C, et al. Sodium glucose co-transporter 2 inhibitors as diuretic adjuvants in acute decompensated heart failure: a case series. ESC Heart Fail. 2020;7(4):1966–71.
pubmed: 32476296 pmcid: 7373933 doi: 10.1002/ehf2.12759
Shentu Y, Li Y, Xie S, Jiang H, Sun S, Lin R, et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-beta/Smad signaling. Int Immunopharmacol. 2021;93: 107374.
pubmed: 33517222 doi: 10.1016/j.intimp.2021.107374
He Y, Pachori A, Chen P, Ma S, Mendonza AE, Amer A, et al. Glucosuric, renal and haemodynamic effects of licogliflozin, a dual inhibitor of sodium-glucose co-transporter-1 and sodium-glucose co-transporter-2, in patients with chronic kidney disease: a randomized trial. Diabetes Obes Metab. 2021;23(5):1182–90.
pubmed: 33512754 doi: 10.1111/dom.14327

Auteurs

Lucia Del Vecchio (L)

Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy. lucia.delvecchio@asst-lariana.it.

Angelo Beretta (A)

Internal Medicine Unit, Valduce Hospital, 22100, Como, Italy.

Carlo Jovane (C)

Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy.

Silvia Peiti (S)

Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy.
School of Medicine and Surgery, Nephrology Clinic, University of Milano, Bicocca, 20100, Milan, Italy.

Simonetta Genovesi (S)

School of Medicine and Surgery, Nephrology Clinic, University of Milano, Bicocca, 20100, Milan, Italy.
Istituto Auxologico Italiano, IRCCS, 20100, Milan, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH