Comparative evolution of vegetative branching in sorghum.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2021
Historique:
received: 06 05 2021
accepted: 26 07 2021
entrez: 13 8 2021
pubmed: 14 8 2021
medline: 15 12 2021
Statut: epublish

Résumé

Tillering and secondary branching are two plastic traits with high agronomic importance, especially in terms of the ability of plants to adapt to changing environments. We describe a quantitative trait analysis of tillering and secondary branching in two novel BC1F2 populations totaling 246 genotypes derived from backcrossing two Sorghum bicolor x S. halepense F1 plants to a tetraploidized S. bicolor. A two-year, two-environment phenotypic evaluation in Bogart, GA and Salina, KS permitted us to identify major effect and environment specific QTLs. Significant correlation between tillering and secondary branching followed by discovery of overlapping sets of QTLs continue to support the developmental relationship between these two organs and suggest the possibility of pleiotropy. Comparisons with two other populations sharing S. bicolor BTx623 as a common parent but sampling the breadth of the Sorghum genus, increase confidence in QTL detected for these two plastic traits and provide insight into the evolution of morphological diversity in the Eusorghum clade. Correspondence between flowering time and vegetative branching supports other evidence in suggesting a pleiotropic effect of flowering genes. We propose a model to predict biomass weight from plant architecture related traits, quantifying contribution of each trait to biomass and providing guidance for future breeding experiments.

Identifiants

pubmed: 34388196
doi: 10.1371/journal.pone.0255922
pii: PONE-D-21-15041
pmc: PMC8362987
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0255922

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Plant Physiol. 2014 Mar;164(3):1542-50
pubmed: 24492336
G3 (Bethesda). 2013 Jan;3(1):101-8
pubmed: 23316442
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3646-51
pubmed: 18305171
G3 (Bethesda). 2018 Jul 31;8(8):2563-2572
pubmed: 29853656
Nat Genet. 2008 Dec;40(12):1489-92
pubmed: 18997783
Genetics. 1995 Sep;141(1):391-411
pubmed: 8536986
Theor Appl Genet. 2014 Nov;127(11):2387-403
pubmed: 25163936
Plant Mol Biol. 2010 May;73(1-2):27-36
pubmed: 20112050
Theor Appl Genet. 2021 Apr;134(4):1185-1200
pubmed: 33423085
Plant Cell Environ. 2010 Jan;33(1):48-58
pubmed: 19843258
Curr Opin Plant Biol. 2011 Feb;14(1):94-9
pubmed: 21144796
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16469-74
pubmed: 21930910
Plant J. 2006 Apr;46(2):282-96
pubmed: 16623890
Plant Physiol. 2009 Jan;149(1):46-55
pubmed: 19126694
Trends Plant Sci. 2013 Jan;18(1):41-8
pubmed: 22858267
BMC Plant Biol. 2015 Apr 19;15:107
pubmed: 25896918
Theor Appl Genet. 2006 May;112(7):1295-305
pubmed: 16491426
Genome. 2012 Jun;55(6):471-9
pubmed: 22680231
J Exp Bot. 2013 Jun;64(9):2593-608
pubmed: 23709672
Nature. 2009 Jan 29;457(7229):551-6
pubmed: 19189423
Genetics. 1989 Jan;121(1):185-99
pubmed: 2563713
Front Plant Sci. 2020 Apr 30;11:467
pubmed: 32425964
Curr Opin Plant Biol. 2015 Feb;23:45-53
pubmed: 25449726
Nucleic Acids Res. 2013 Jan;41(Database issue):D1152-8
pubmed: 23180799
Ann Bot. 2011 May;107(7):1203-12
pubmed: 21504914
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):453-8
pubmed: 23267105
Curr Opin Plant Biol. 2007 Feb;10(1):21-5
pubmed: 17140840
Mol Biol Evol. 2016 Sep;33(9):2417-28
pubmed: 27335143
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30
pubmed: 24288371
Plant J. 2014 Aug;79(4):607-22
pubmed: 24612082
BMC Plant Biol. 2014 May 28;14:148
pubmed: 24884377
Theor Appl Genet. 2014 Oct;127(10):2253-66
pubmed: 25163934
PLoS One. 2014 Aug 14;9(8):e105352
pubmed: 25122453
Genetics. 2008 Sep;180(1):629-37
pubmed: 18757942
Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6127-31
pubmed: 11607551
Front Plant Sci. 2015 Jan 13;5:741
pubmed: 25628627

Auteurs

WenQian Kong (W)

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America.
Department of Statistics, University of Georgia, Athens, Georgia, United States of America.

Pheonah Nabukalu (P)

The Land Institute, Salina, Kansas, United States of America.

T Stan Cox (TS)

The Land Institute, Salina, Kansas, United States of America.

Valorie Goff (V)

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America.

Jon S Robertson (JS)

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America.

Gary Pierce (G)

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America.

Cornelia Lemke (C)

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America.

Rosana Compton (R)

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America.

Jaxk Reeves (J)

Department of Statistics, University of Georgia, Athens, Georgia, United States of America.

Andrew H Paterson (AH)

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America.

Articles similaires

Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Humans Mendelian Randomization Analysis Graves Disease Aging Genome-Wide Association Study
Sorghum Antioxidants Phosphorus Fertilizers Flavonoids

Classifications MeSH